SUMMARY DATA OF NATURAL FIELD EXPERIMENTS
PUBLISHED ON FIELDEXPERIMENTS.COM

John A. List¹
September 2019

Back in January of this year I provided summary data on all field experiments that were published on a website that I started nearly 20 years ago. I subsequently wrote one of these notes to provide data for artefactual field experiments titled “A Summary of Artefactual Field Experiments on Fieldexperiments.com: The Who’s, What’s, Where’s, and When’s”. Due to several email requests, I have now put together a summary of natural field experiments on the site.

This note summarizes that information—for natural field experiments published on the bibliographical site http://www.fieldexperiments.com. As I noted earlier, in my own work I have reserved the term "field experiment" for those cases where I observed subjects in their naturally occurring environments. I explicitly, therefore, discriminated between explorations in this environment and laboratory studies that used non-standard subject pools. In a JEL paper (Harrison and List, 2004), such important differences are accounted for via qualifiers.

I followed this nomenclature on the site by placing studies into three groups: 1. Artefactual field experiments, which are the same as conventional lab experiments but with a non-standard subject pool (i.e., non-students). Running Peruvian borrowers through lab games (Karlan, 2005 AER) would be an example of an artefactual field experiment. 2. Framed field experiments, which are identical to artefactual field experiments but with field context in either the commodity, task, or information set that the subjects use. An example would be work that elicits valuations for public goods that occur naturally in the environment of the subjects (see some of Bohm’s work). 3. Natural field experiments, which are identical to framed field experiments except that the subjects do not know that they are participants in an experiment. An example could be found among the recent surge in fundraising experiments (see, e.g., List and Lucking-Reiley, 2002, JPE).

Of course, not all studies will fit neatly into one of these three categories. I hope, however, that the categories provide a useful way to think about the factors outside of a traditional laboratory experiment that are potentially important.

Over the years, I have increasingly received questions about which papers are included on the site and their impact. Instead of sending out several emails per week answering such questions, in January I decided to put together a brief account of the studies and

¹Department of Economics, University of Chicago; NBER. Thanks to Michael Cuna, Justin Holz, Ariel Listo, and Haruka Uchida for pulling the data and putting the information together for this summary.
their impact. I focused on all field experimental studies and after making public that working paper I received several emails asking me to break down the areas even further in separate notes. This note describes one such breakdown of natural field experiments (NFE). I use RePEc's data to provide a few (incomplete) glimpses of NFE’s impact.

Figure 1 summarizes all of the natural field experimental (NFE) papers published from 1995 to 2018 on my website. The growth that one would expect is evident, but the heterogeneity from year to year was unexpected. This gives an indication that I am only partly capturing this market on my website, and one should be cautious when interpreting much from these data.

Figure 1: Time-Series of NFE papers published annually on fieldexperiments.com

Next, I provide a rough glimpse of the NFE impact. In Figure 2, I provide a time-series of RePEc's impact factor scores from 2009-2018. The impact factor is computed as the number of citations divided by the number of items in the series. Observations are annual. An interesting trend here is that the impact factor of NFEs increases steadily over time. This is a good sign for the field experimental market for this type of approach. Indeed, of the 3 field experimental types, NFEs enjoy the largest impact factors.
Figure 2: Time-Series of RePEc's impact factor for NFE's, which is the number of citations divided by the number of items in the series. Observations are annual for all NFEs on fieldexperiments.com.

To complement the impact factor summary, I create two “usage” summaries in Figures 3 and 4. Here, I provide a time-Series of the number of abstract views and downloads taken from RePEc. Observations are monthly for all NFEs on fieldexperiments.com. Here the data suggest a steady number of downloads, with a blip in 2017. This blip was caused by one study that added a large number of downloads.
Figure 3. Time-series of the number of abstract views from RePEc. Observations are monthly for all NFEs on fieldexperiments.com.

Figure 4: Time-series of downloads from RePEc. Observations are monthly for all NFEs on fieldexperiments.com.
In Figure 5, I present the annual number of unique authors of NFEs. In Figure 6, I provide information on the cumulative number of unique authors of NFE papers. From the graphs, we can see that the growth of the number of authors entering the field, that started in the early 2000s, has not come to a stop yet. Both figures highlight the breadth of NFEs in the experimental literature, with nearly 400 different authors now having published an NFE on the site. Thus number is much larger than comparable authors who have published AFEs and FFEs on the website. This bodes well for the NFE approach.

Figure 5: Time-series of the unique number of authors of NFEs. Observations are annual for all NFEs on fieldexperiments.com
Figure 6: Time-Series of the cumulative number of unique authors for field experimental papers published for NFES. Observations are annual for all NFES on fieldexperiments.com.

Finally, in the references section I provide the list of the papers that have been posted on fieldexperiments.com to answer the query of which papers are published on the site.

In closing, thanks for using the site and if you should have any comments or questions please let me know.
References

Al-Ubaydli, Omar, and John List. How natural field experiments have enhanced our understanding of unemployment. No. 00649. The Field Experiments Website, 2019.

Balafoutas, Loukas, Nikos Nikiforakis, and Bettina Rockenbach. "Altruistic punishment does not increase with the severity of norm violations in the field." Nature communications 7 (2016): 13327.

Batzilis, Dimitris Sonia Jaffe, Steven Levitt, John A. List, and Jeffrey Picel, “How Facebook can deepen our understanding of behavior in strategic settings: Evidence from a million rock-paper-scissors games." Games, (2019), 10(2), 18; https://doi.org/10.3390/g10020018 (registering DOI)

Buck, Steven, and Carlos A. Alpízar. The role of trust in access to bank loans: Results from field experiments in the ecuadorian amazon. No. 0015. The Field Experiments Website, 2006.

Cardenas, Juan-Camilo. Bringing the lab to the field: more than changing subjects. No. 00024. The Field Experiments Website, 2004.

Cardenas, Juan-Camilo. Metodos experimentales y participativos para el analisis de la accion colectiva y la cooperaci_n en el uso de recursos naturales por parte de comunidades rurales. No. 00021. The Field Experiments Website, 2003.

Carpenter, Jeffrey, and Juan Camilo Cardenas. Using cross-cultural experiments to understand the dynamics of a global commons. No. 28. The Field Experiments Website, 2002.

Drydakis, Nick. And the House Goes to Ethnic Discrimination in the Greek Rental Market. No. 0728. 2007.

Heldt, Tobias. "Informal sanctions and conditional cooperation:: A natural experiment on voluntary contributions to a public good." In European Regional Meeting, Nottingham, UK, 7-10 September, 2006. 2006.

Herberich, David H., Steven D. Levitt, and John A. List. "Can field experiments return agricultural economics to the glory days?." American Journal of Agricultural Economics 91, no. 5 (2009): 1259-1265.

Hossain, Tanjim, and John Morgan. "... plus shipping and handling: Revenue (non) equivalence in field experiments on ebay." Advances in Economic Analysis & Policy 5, no. 2 (2006).

Levitt, Steven D., John A. List, and David H. Reiley. What happens in the field stays in the field: Professionals do not play minimax in laboratory experiments. working paper, 2007.

Linardi, Sera, and Nita Rudra. Globalization and Redistribution Towards the Poor in Developing Countries: Experimental Evidence from India. No. 00399. The Field Experiments Website, 2015.

List, John A. "Experimenting with Fish has some Advantages." (2008).

List, John A. "Introduction to field experiments in economics with applications to the economics of charity." Experimental Economics 11, no. 3 (2008): 203-212.

Mann, Christopher B. "Do advance letters improve preelection forecast accuracy?." Public Opinion Quarterly 69, no. 4 (2005): 561-571.

Seiler, Michael J. "Do as I say, not as I do: The role of advice versus actions in the decision to strategically default." Journal of Real Estate Research 37, no. 2 (2015): 191-216.

Tong, LCP, Karen Ye, Kentaro Asai, Seda Ertac, Seda, John A. List, Howard Nusbaum, and Ali Hortacsu, “Trading experience modulates anterior insula to reduce the

Willoughby, Michael T.; Kuhn, Laura J.; Blair, Clancy B.; Samek, Anya and John A. List, “The test-retest reliability of the latent construct of executive function depends
on whether tasks are represented as formative or reflective indicators," Child Neuropsychology, (2017), 23(7):822-837.

Ye, Maoliang, Sam Asher, Lorenzo Casaburi, and Plamen Nikolov. One step at a time: Does gradualism build coordination?. mimeo, 2014.
