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Abstract

The tontine, which is an interesting mixture of group annuity, group life insurance, and lottery, has a peculiar
place in economic history. In the seventeenth and eighteenth centuries it played a major role in raising funds to
finance public goods in Europe, but today it is rarely encountered outside of a dusty footnote in actuarial course
notes or as a means to thicken the plot of a murder mystery. This study provides a formal model of individual
contribution decisions under a modern variant of the historical tontine mechanism that is easily implemented by
private charities. Our model incorporates desirable properties of the historical tontine to develop a mechanism to
fund the private provision of a public good. The tontine-like mechanism we derive is predicted to outperform not
only the voluntary contribution mechanism but also another widely used mechanism: charitable lotteries. Our
experimental test of the instrument provides some evidence of the beneficial effects associated with imple-
menting tontine-like schemes. We find that the mechanism has particular power in cases where agents are risk-
averse or in situations where substantial asymmetries characterize individual preferences for the public good.
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tontine: An annuity scheme wherein participants share certain benefits and on the death of
any participant his benefits are redistributed among the remaining participants; can run for
a fixed period of time or until the death of all but one participant. Webster’s Online
Dictionary

1. Introduction

The oldest standing bridge in London (Richmond Bridge), numerous public buildings and
other municipality projects throughout the western world, and several wars, including the Nine
Years’ War, all share a common thread: they were wholly, or partially, funded by tontines. The
idea of the tontine is believed to have originated in 1652, when an expatriate banker, Lorenzo
Tonti, proposed a new mechanism for raising public funds to Cardinal Mazarin of France.' Tonti
advertised his idea as “A gold mine for the king....a treasure hidden away from the realm.” The
salesmanship of Tonti coupled with the difficulties associated with raising taxes in seventeenth
century France led to an enthusiastic endorsement from King Louis XIV. While tontines, which
are a mixture of group annuity, group life insurance, and lottery, prospered as a popular means for
financing public goods for several decades, they have since been banned in Britain and the United
States due to the incentives to murder other participants.’

Accordingly, this study does not try to revive tontines as a mechanism to finance government
debt or provide a lifetime annuity for subscribers. Rather it sets out to explore a mechanism that
incorporates desirable properties of the tontine, and evaluates the mechanism as a potential
instrument used by a charitable organization in the context of a short-run capital campaign. We,
therefore, intentionally abstract from the temporal aspects of historical tontines to concentrate on
those features of tontines that a fundraiser can readily implement to improve upon the voluntary
provision of public goods in an atemporal context.

In this light, a natural comparison to make is that of tontines and other “demand side”
instruments that are regularly employed by charities and fundraisers: rebates and matching (Eckel
and Grossman, 2003), seed money (Andreoni, 1998; List and Lucking-Reiley, 2002), charitable
auctions (Engers and McManus, 2002; Goeree et al., 2005) or raffles and lotteries (Morgan, 2000;
Morgan and Sefton, 2000; Landry et al., 2006; Lange et al., 2007).> We add to this literature by
investigating the performance and the optimal design of a mechanism that shares important
qualities with the historical tontine but is easily implemented by private charities.

We begin our study with a brief history of tontines, focusing on the elements of the historical
instrument that yield a model of the new fundraising mechanism. The key innovation concerns
two relevant properties: while the probability for an agent to compete with a given subset of
participants for part of the prize is exogenously given (historically the survival probability), the
payoffs to an agent depend on his or her relative contribution compared to that of other competing

! Similar mechanisms are believed to have been employed in the Roman Empire several centuries earlier. Tonti’s
mechanism should not be confused with the tontines in Western Africa, which are small, informal savings and loan
associations similar to ROSCAs (Rotating Savings and Credit Associations).

2 This allure of the tontine has led to a fantastic plot device for detective story writers (the interested reader should see,
e.g., The Wrong Box by Robert Louis Stevenson, which was made into a film in 1966 starring Peter Cook, Dudley
Moore, Ralph Richardson, Michael Caine, and Tony Hancock).

3 In turn, this literature draws from the numerous papers that have studied mechanisms to alleviate the tendency of
agents to free-ride (see e.g., Bergstrom et al., 1986; Groves and Ledyard, 1977; Walker, 1981; Bagnoli and McKee, 1991;
Varian, 1994; Falkinger, 1996).
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participants.* For agents with identical valuations of the public good, we then outline the
conditions that define an optimal tontine—one that maximizes total group contribution levels.
Properties of tontines are also explored upon relaxation of symmetry. We then compare the
performance of the tontine to a popular fundraising scheme used today: lotteries (see, e.g.,
Morgan, 2000; Lange et al., 2007).

Our main findings are as follows: For agents with identical valuations of the public good,
(i) the optimal tontine consists of all agents receiving a fixed “prize” amount equal to a percentage
of their total contribution, i.e. similar to an endogenous rebate scheme, (ii) contribution levels in
this optimal tontine are identical to those of risk-neutral agents in an equivalently valued single-
prize lottery, and (iii) contribution levels for the optimal tontine are independent of risk-aversion.
Our tontine-inspired mechanism thus induces greater contributions (and therefore public good
provision levels) than lotteries when agents are risk-averse.

In cases of asymmetric individual valuations for the public good, tontines should distribute
only part of the prize among all agents, with the remainder being distributed across a subset of
randomly drawn agents (corresponding to “surviving” players in the historical tontine). Such a
scheme resembles features of the historical tontine and is demonstrated to yield higher con-
tributions than the optimal lottery. Further, this mechanism can obtain close to full participation
compared to partial participation in the lottery mechanism. This finding is important in light of the
fact that fundraising strategists typically rank building a “donor development pyramid” as the
most important aspect of a successful long-term fundraising effort.

We test these predictions using a set of experimental treatments carried out in the laboratory.
These treatments compare the outcomes of the voluntary contribution mechanism (VCM), the
single and multiple prize lotteries, the rebate scheme, and a tontine which pays half the prize as a
rebate and distributes the remainder among two randomly drawn players. The experimental
results suggest that tontines lead to higher contribution levels than the VCM. Compared to
lotteries, tontines are found to have beneficial effects in two cases: i) when substantial asym-
metries of preferences for the public good exist, and ii) when agents are sufficiently risk-averse.

We close the study with a brief summary of the paper’s contributions. We argue that our results
have implications for empiricists and practitioners in the design of fundraising campaigns.
Further, they provide useful avenues for future theoretical work on voluntary provisioning of
public goods.

2. Tontines throughout history

Lorenzo Tonti was a Neopolitan of little distinction until his sponsor, Cardinal Mazarin of
France, who was responsible for the financial health of France, supported his position in the court
of the French King in the 1650s. In this position, Tonti proposed a form of a life contingent
annuity with survivorship benefits, whereby subscribers, who were grouped into different age
classes, would make a one-time payment of 300 livres to the government. Each year, the
government would make a payment to each group equaling 5% of the total capital contributed by
that group. These payments would be distributed among the surviving group members based
upon each agent’s share of total group contributions. The government’s debt obligation would
cease with the death of the last member of each group. Although the plan was supported

4 The astute reader will notice that these features reverse the fundamental characteristics of a widely-used fundraising
instrument: charitable lotteries. As we discuss below, how such a reversal of the role of probabilities and payoffs affects
the performance of such an instrument for public good provision is unknown.
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enthusiastically by Louis XIV, Tonti’s plan was ultimately rejected by the French Parliament
(Weir, 1989).

While the Netherlands started a successful tontine in 1670, it was not until 1689 that France
offered its first national tontine to help finance the Nine Years’ War. The design was quite similar
to that originally proposed by Tonti. Later offerings in France coincided with peaks in national
capital demand during periods of war and were generally successful in raising the sought-after
capital. During France’s four major wars of this period, national tontine offerings raised
approximately 110 million livres from around 110,000 individuals.

Contrary to the relative success enjoyed by France, tontine offerings in England often failed to
raise the desired capital. England provided its first national tontine in 1693; this initial tontine
generated but a tenth of the one million pounds set as its goal. Yet England did successfully use
the tontine to fund many public projects, including construction of the Richmond Bridge, claimed
to be the oldest standing “London” Bridge.

While the use of tontines to finance government projects was predominately a European
endeavour, the notion that tontines could be used as a means to finance national debt has a
historical basis in the U.S. as well. Faced with growing principal liability on national debt,
Alexander Hamilton proposed a national tontine in the U.S. in his 1790 Report Relative to a
Provision for the Support of Public Credit (Jennings et al., 1988). Hamilton’s proposal was to
reduce principal repayments on national debt by converting old debt with principal that was
repayable at the discretion of the government into debt demanding no return on principal.

The structure of the tontine that Hamilton proposed was inspired by a tontine originally
proposed by William Pitt in 1789. The proposed tontine included six age classes, and shares in the
tontine would be sold for $200 with no limit on the number of shares that any agent could
purchase. Individuals could subscribe on their own lives or on the lives of others nominated by
them. Hamilton proposed a freeze component on debt repayment, however: the annuities of
subscribers who passed away would be divided among living subscribers until only 20% of the
original subscribers remained. Once this threshold was reached, the payments to remaining
survivors would be frozen for the duration of their lives (Dunbar, 1888).

2.1. Tontine insurance in the United States

While tontines proper were not used after the eighteenth century, an adaptation of the tontine
was implemented in the U.S. life insurance market in 1868. Tontine insurance was introduced in
1868 by the Equitable Life Assurance Society of the U.S. Under tontine insurance, premiums
served two distinct purposes: (i) provision of standard life insurance benefits and (ii) creation of
an individual investment fund. Policyholders deferred receipt of the dividend payments which
were pooled and invested by the insurance company on behalf of the policyholders for a specified
time period. At the end of this period, the fund plus the investment earnings (which could be
received as either cash or a fully paid life annuity) were divided proportionately among the entire
active, surviving policyholders. Beneficiaries of policyholders who passed away before the end of
the tontine period received the specified death benefits, but had no claim on the tontine fund
money (Ransom and Sutch, 1987).

Conceptually, tontine insurance had several advantages relative to a standard life insurance
policy. Policyholders were able to secure life insurance plus create a retirement fund. Survivors
could receive a generous rate of return on these investments if a large proportion of other group
members were to pass away or allow their policy to lapse. Tontine insurance provided an
opportunity for young individuals to save for retirement by providing a low-risk, high-yield
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investment fund available on an installment plan. Unfortunately, corruption by the insurance
companies led to the prohibition of tontine insurance sales by 1906 (Ransom and Sutch, 1987).

3. Using tontines for voluntary provision of public goods

Historical tontines were designed to combine features of group-annuity and life insurance with
the provision of public goods. As these features require long-term commitment and credibility of
the organizing entity, it may be difficult for private fundraisers to implement a mechanism
resembling the historical tontine. We therefore focus on those characteristics of tontines that a
fundraiser can readily use to improve upon the voluntary provision of public goods in an
atemporal context, e.g., a charity event.” In this regard, we view the most essential characteristic
of tontines as follows: while the probability for an agent to compete with a given subset of
participants for part of the prize is exogenously given, the payoffs to an agent depend on his or her
relative contribution compared to that of other competing participants.

This feature reverses the fundamental characteristics of a widely-used fundraising instrument,
charitable lotteries, whereby the payoffs (prizes) are exogenously given while the probabilities of
winning depend on the (relative) contribution level of an agent. How this reversal of the role of
probabilities and payoffs affects the performance of such an instrument for public good provision
is unknown to our best knowledge. To model a mechanism for public good provision that shares
similarities with the historical tontine (and which we therefore refer to as “tontine” in the
remainder of the paper), we must first define the utility structure of agents and their probabilities
of sharing a particular prize with a set of players.

3.1. The probability structure

We consider a set Q={l1,..., n} of n agents. A total prize P can be split into T parts P,
(P=Y.1-,P) — corresponding to the =1,...,T periods in the historical tontine. We define a
probability structure by

n: 2270, 1]

such that 7(S;,...,S7) denotes the probability that subsets S, < Q (¢=1....,T) compete for the prizes
P,. Since we are interested in tontines as a fundraising mechanism that does not discriminate
amongst players, we assume that the probability of competing for a given prize P, is independent
of'an agent’s identity. That is, for any permutation x: 2— Q of players we assume that 7(S;,...,S7) =
7 (2S1).....7(St)) where Z(S)={i€Qly (1) E5}.

Differently from the historical tontine where the probabilities were given by the likelihood that
a set of players was alive in a given period, in our tontine-inspired fundraising device, a charity
can design the probability structure in an atemporal context to optimize total contributions to the
public good.

5 In a similar spirit, as private charities lack the ability to legally and credibly implement the types of taxation and
reallocation schemes available to government organizations, we do not evaluate the performance of our mechanism
relative to the class of mechanisms available to government entities. Rather, we concentrate on evaluating the
performance of our mechanism relative to only that class of mechanisms that are feasible for private charities, such as
charitable lotteries.
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3.2. The basic model

Consider an agent i with (ex post) utility given by:

Ui = u;i(yi + hi(G)),

where y; is a numeraire and G the provision level of the public good. We assume /,(G) is
increasing and concave in the level of the public good (#(®)>0, /;(®)<0).° Further, we employ
the standard assumption in the public goods literature that it is socially desirable to provide a
positive amount of the public good, i.e., Y /4:(0)>1. We later interpret u,(®) as a Bernoulli
function of a risk-averse decision maker, i.e. #;>0, u; <0.

Given an initial endowment w; of wealth (income), the choice facing the agent is to determine
the amount b; <w; of wealth to invest in the tontine. We assume that wealth constraints are non-
binding for all agents.” Investment b; in the tontine provides the agent with an uncertain monetary
return x; that is dependent upon own contributions and those of all other members of a group:

l/i = ui(w,- +X,' — bl’ + h,(G))

We assume that the tontine pays different prizes P,>0 with an aggregate prize allocation of
YL ,P,=P and that the level of public good provision equals the total contribution minus the
aggregate prize level:

n T
G=B-P=Y b—-» P
i=1 t=1

provided contributions cover the prize payments and G=0 otherwise.®
For each prize P, a randomly selected group of players, S, “competes”: they receive a

payment that is determined by their relative contribution level, i.e. a player i €S, receives a

payment 1%"(&) P, where B—B(S)) is the sum of the contributions made by the set S; of players.

The total tontine payment to a player is given by

T
b;
P1<S) = Z PIB(—I)l[iESt].

t=1

where 1j;eg;=1 if and only if /€S, and 0 otherwise. Given these definitions, we can fully
characterize our tontine-inspired mechanism by

(Q7 T7 (Pl’ ""PT)77T)

© For studies that relax the assumption of utility being dependent upon only the level of the public good, see Sugden
(1982, 1984) and Andreoni (1990). These theories suggest that if one were to rewrite utility such that it is a function of
both the level of the funds raised and one’s own contribution, then the standard result of free-riding behavior can be
reversed.

7 Generally, there is the possibility of facing a binding budget constraint — especially for large prize levels in our
theory. However, we wish to remain true to the spirit of the analysis of alternative mechanisms, such as charitable
lotteries, which usually abstracts from binding wealth constraints (see Morgan, 2000, footnote 9). All of the comparisons
in performance between the mechanisms studied in this paper and the alternative lottery schemes are therefore valid.

# Note that in the equilibria of the optimal tontine mechanism derived below, contributions always cover the prize
payments.
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where Q is the set of players, T the number of prizes, 7 a probability structure as defined in the
previous section, and (P;,...,P7) the prize distribution.

We now consider the optimal tontine design. In particular, we address the question of how a
charity with a fixed prize budget, P, should allocate this prize money across prizes and choose the
probability structure to maximize total contributions.

Given a probability structure 7, the ex ante expected utility of player 7 is given by

EU, = Z 7(S)ui(w; — bi + hi(B — P) + Pi(S)). (1)
S=(Sy,... Sp)e2®T

Differentiating expression (1) with respect to b; gives the first order conditions defining agent i’s
optimal contribution level:

T
_1+hir<.)+2ptw

0= > nSu(e) T

S=(Sy,... ,Sp)e2®T

0> Z n(S)u;’ (@)

S=(Sy,... ,Sp)e2®T

1[,-5&]] for ieQp

T
1
—1+h,«’(0)+§ P ljics | for izQp.
2o RS

where Qp denotes the set of players with positive contributions.
3.3. Tontines for agents with symmetric valuation of the public good

We first consider the case of agents with identical valuation of the public good (4(G)=h(G)).
In this special case, under our model differences in equilibrium contributions can only occur due
to differences in the risk attitudes of players. Yet, we show that the optimal tontine completely
avoids a randomization of the set of competing players, effectively eliminating all risk from the
decision problem. That is, the optimal tontine can be characterized by 7=1 and 7(£)=1: the total
prize money is distributed among all players according to their relative contributions. The optimal
tontine, therefore, corresponds to a rebate mechanism whereby the rebate rate is endogenously
determined by contribution shares. We prove this result formally in the following proposition:

Proposition 1. Optimal tontine—Symmetric risk-neutral agents

If agents value the public good identically, contributions to the public good using a tontine are
maximal if the total prize is distributed among all players according to their respective
contribution shares.

Proof. See Appendix A. [

For the optimal tontine, players are not subject to risky payoff streams. Since all players value the
public good identically, the equilibrium is given by the symmetric version of first-order condition (2):

L—w(e) =22ty p Bl (3)
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Given our symmetry assumption, all # agents contribute the same amount (l; ) which generates a total
contribution level (B) for the optimal tontine given by

n—1

nb=B  B(l—-hB-P)= P. (4)

n
The optimal tontine for symmetric agents, therefore, has a simple structure: all agents receive a rebate
proportional to their contribution relative to that of the group. Given the contribution of all other
agents, the tontine payment to agent / under the tontine is given by %P, where P denotes the prize
level.

The total payoff to a player is therefore given by w; — b; + h(B — P) + %P, which can also be
interpreted as the expected payoff in Morgan’s (2000) risk-neutral one-prize lottery. All of his
results therefore apply. In particular, contributions will exceed the prize level P and raise a
positive amount of money for the public good net of prize payments as

n—1

P(1—h'(0))> Penh'(0)>1,

n
which coincides with the condition for a public good.’
We summarize these results as follows:

Proposition 2. Contribution levels for optimal tontines-symmetric players

For players with identical valuation of the public good, the optimal tontine raises contributions
in excess of the prize-level P. The provision level of the public good is increasing in P.

In theory, our optimal tontine thus ensures net public good provision assuming an interior
equilibria. As a practical matter, it should be noted that regardless of whether total contributions
are sufficient to cover the prize allocation, we assume that all prize obligations will be paid by the
charity. While this may seem a precarious situation for single-shot games in the real world, it is
important to recognize the dynamic nature of charitable fundraising. For example, a charity might
decide to run a loss from a charity event if by doing so it can generate a warm list of potential
donors which reduces the solicitation costs in subsequent fundraising drives. In fact, this long-
term aspect is invaluable as start-up fundraisers typically lose money in their first few attempts
(see, e.g., Sargeant et al., 2006).

3.4. Tontines and risk-aversion

The tontine is equivalent to a single-prize lottery in expected payoff terms, but the tontine-
rebate mechanism induces a certain payoff. That is, in equilibrium players are not exposed to risk.
Equilibrium contributions therefore do not depend on the risk posture of agents. This is different
from lotteries that pay one prize to a randomly determined winner. Hence, the payoff stream for

® The optimal tontine that we study in this paper provides a rebate (subsidy) on individual contributions to the public
good. This feature resembles the study relating government subsidies and contributions to a public good by Andreoni and
Bergstrom (1996). In their case, however, subsidies are financed by taxes, whereas in our model the rebates are taken out
of the contribution to the public good. The provision of the public good therefore does not depend on the possibility of
enforcing tax payments. To balance the budget, subsidy rates in our model are not exogenously fixed but endogenously
given by the individual relative to total contributions.
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the single-prize lottery is risky, and risk-averse agents will contribute less than their risk-neutral
counterparts (see Lange et al., 2007).' We summarize this notion in our next proposition:

Proposition 3. Tontines for risk-averse players

Individual contributions under the tontine that distributes among all participating players are
independent of the risk posture of agents. If agents are risk-averse but symmetric with respect to
their valuation of the public good, it dominates any lottery as a fundraising instrument.

Proposition 3 highlights two reasons why fundraisers may prefer to implement a tontine rather
than a charitable lottery: (i) the independence of contributions and risk posture under a tontine and
(ii) the superiority of tontines for risk-averse agents. Hence, it is not necessary for the fundraiser to
have prior beliefs over the risk preference of a potential donor pool when designing the “optimal”
fundraising mechanism as is the case for charitable lotteries.

3.5. Tontines with heterogeneous agents

The optimal tontine for players with identical valuations of the public good coincides with a
pure rebate scheme. Tontines that deviate from the pure rebate scheme can lead to both higher
contributions and higher participation rates if agents have heterogeneous valuations for the public
good, however. Because contributions under such a mechanism (when optimally implemented)
exceed those elicited via the rebate scheme, the contribution level for symmetric, risk-neutral
agents in a single-prize lottery provides a lower bound on equilibrium donations. As Morgan
(2000) has shown that contributions under a single-prize lottery are sufficient to cover the prize
payments in such an environment, we need only invoke his result to show that contributions under
the class of mechanisms we consider are sufficient to cover prize payments.

The following proposition shows that one can increase participation rates by deviating from
the pure rebate scheme when agents have heterogeneous valuations for the public good:

Proposition 4. Participation in tontines

If for P,>0 and k; there exists (S;,...,.Sp) with k,=#S, for all t such that n(S,S-;)>0, then at
least n—k,+ 1 players contribute to the tontine.

Proof. See Appendix A. [

In particular, one can guarantee the participation of at least all but one agent by having a
positive probability of only two agents competing for a prize P,>0. Additionally, Proposition 4
implies that even a slight deviation from the rebate scheme can lead to a substantial increase in
participation rates. This finding could be of potential interest for fundraisers who desire to create a
“warm” list of donors that can be specifically targeted in subsequent fundraising drives.''

Besides increasing participation rates, a deviation from the rebate scheme can also induce
larger contribution rates if players have heterogeneous valuations for the public good. To show

' Lange et al. (2007) concentrate on preferences which show constant absolute risk aversion. The dominance results
generalizes to Bernoulli functions with convex marginal utility, i.e. which satisfy u” > 0.

' As Landry et al. (2006) note, the warm list is invaluable in light of the fact that fundraising strategists typically rank
building a “donor development pyramid” as the most important aspect of a successful long-term fundraising effort.
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this, we consider the case of risk-neutral agents for which only the expected prize payment is
essential in determining contributions. As we assumed that the probability structure of the tontine-
inspired mechanism does not depend upon the identity of agents, any tontine for risk-neutral
players can be equivalently modeled by specifying the prize level P, (¢=1,...,n—1) which is
distributed among a set of # randomly drawn agents. That is, the tontine is given by

-1
T n . . o
T=n—1, (81, ..., S7) = Hf_l(k,) if kb =#S;,=n+1—1¢ forall ¢
0 otherwise

(5)

For such a tontine, the first order condition (2) can be rewritten as

n—1 -1
—h'®) =Y " 3 B(S) —bi | :
1 —h/(e) = t—]Pt<n+ 1_ t) B(St)z ljcs,) forieQp

SCQ#S=n+1-t (6)

n—1 -1
1
1 — hi/(O)E = Pt( n > _— l[iESp] for l%QP
; n+l—t SQQ;g::nH—tB( z)2

where Qp denotes the set of contributing players.

This describes a simple mechanism that can readily be applied in fundraising events: (i) the
fundraiser distributes a portion of the total prize budget among the set of all participants according
to their relative contribution shares, (ii) for any given portion of the total prize, the fundraiser
randomly selects a predetermined number of players from the set of all participants, (iii) this
portion of the prize is then allocated amongst this randomly drawn subset of participants
according to their relative contribution shares.

For example, one could distribute part of the prize as a rebate among all participants and then
randomly determine two agents who share the remaining prize money. The following proposition
shows that for heterogeneous agents even such a simple-structured tontine can increase the total
provision level of the public good.

Proposition 5. Tontines—Heterogeneous agents

If agents are heterogeneous with respect to their valuation of the public good, then
contributions can be increased by using a tontine which combines a rebate scheme with an
additional prize distributed among two randomly drawn agents (i.e. condition (5) with P;=0 for
t=2,..n—2, Pn7]:8, P] :P_S) lf

ko — H(0)
SQQO.,#S:22 —2H(Q0) + H(S)(ko — 1)
! ko — H(€) n(n—1)
+ngl,#afs:zkl —1-2-H(S)(k — 1) +2H(Qo)> 2 (ko — 1) (7)

where Q, denotes the set of ky players with positive contributions in the pure rebate scheme
(¢ =0) and Q, is the set of k; players who contribute zero under the pure rebate scheme but elect
to contribute a positive amount under the two stage mechanism (i.e., for arbitrarily small ¢>0).
Marginal valuations at € =0 are denoted by H(S)=) i=sh/(®).
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Proof. See Appendix A. [

Before proceeding a few comments on Proposition 5 and the proposed two-stage mechanism are
warranted. The sets €, and Q; are not relevant for the random selection process. Importantly, the
probability that an agent in Q) is selected to compete for the second-stage allocation is identical to the
probability that an agent in the set © is selected. Hence, the charitable organization need not observe
individual preferences to effectively implement the two-stage mechanism. Rather, all the charitable
organization need observe is that there exists a set of agents who are approximately indifferent to
contributing under the pure rebate scheme.

A direct implication of Proposition 5 is that a fundraiser can increase contributions by deviating
from the pure rebate scheme if there are only two players on the margin of contributing, i.e. if
2—=2H(Qy)+ H(S)(ko—1)=0. As an illustration of Proposition 5, consider the following example:

Example 1. Assume two types of agents with linear marginal valuations of the public good: /(B)=
h;B with h;=0.75. The number of agents of both types is given by n;=n,=2. Applying the first
order condition yields the contribution under the pure rebate scheme:

1.5 —
— i h>0.5
By/P=14( 125—h,

2 if h,<0.5
Type 2 agents only contribute to the pure rebate scheme if 1, >0.5. However, solving condition (7), it
can be shown that one can improve upon the pure rebate scheme if 0.478<h,<0.576.

In the prior subsection, we showed that a tontine with Py=P coincides with a single-prize
lottery. Lange et al. (2007) show that it is possible to improve upon the single-prize lottery by
providing (at least) a second prize if agents are heterogeneous and

‘ _1\2
(o =2) Y 5 sl ~ H@) k) —lh," >(IZ e "

ieQy 0= ieQ

Comparing this criterion with the analogous conditions derived in Proposition 1, and upon
expansion of Example 1, we illustrate conditions under which public good provision can be
increased using a tontine rather than the optimal lottery:

Example 2. Consider the situation in Example 1. Using lotteries, condition (8) shows that one could
never improve upon the single-prize lottery by introducing a second prize if 1, <0.5. However, even
for h,>0.5, condition (8) cannot be satisfied and an optimally designed tontine will outperform any
lottery for marginal valuations of the Type 2 agents in the range 0.478</,<0.576.

The following proposition summarizes these findings:
Proposition 6. Tontines versus lotteries—Heterogeneous agents

If agents are risk-neutral and heterogeneous with respect to their valuation of the public good,
then there are situations in which appropriately designed tontines outperform lotteries.

While we have provided an arbitrary example to illustrate this result, in real-world applications
there are usually agents who are approximately indifferent between contributing to a public good.
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Table 1
Experimental design
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Session 1

Session 2

Symmetric—VCM
MPCR=0.30
Endowment=100

Symmetric—SPL
MPCR=0.30
Endowment=100
Prize=80

Symmetric—REB
MPCR=0.30
Endowment=100
Prize=80

Symmetric—TON
MPCR=0.30
Endowment=100
Initial prize=40
Second prize=40

Asymmetric—VCM
MPCR={0.9, 0.1, 0.1, 0.1}
Endowment=100

Asymmetric—NPL
MPCR={0.9, 0.1, 0.1, 0.1}
Endowment=100

Prize= {50, 20, 10}

Asymmetric—REB
MPCR={0.9, 0.1, 0.1, 0.1}
Endowment= 100

Prize=80

Asymmetric—TON
MPCR={0.9, 0.1, 0.1, 0.1}
Endowment=100

Initial Prize=40

Second Prize=40

N=20 subjects
10 rounds

N=20 subjects
10 rounds

N=16 subjects
10 rounds

N=16 subjects
10 rounds

N=20 subjects

10 rounds

N=20 subjects
10 rounds

N=20 subjects
10 rounds

N=20 subjects
10 rounds

N=16 subjects
10 rounds

N=24 subjects
10 rounds

N=20 subjects
10 rounds

N=12 subjects

10 rounds

N=16 subjects
10 rounds

N=16 subjects
10 rounds

N=16 subjects
10 rounds

Note: Cell entries provide the experimental design and parameters for each treatment. For example, in the Symmetric-
VCM treatment the MPCR=0.30 and the subjects were endowed with 100 tokens. In this treatment there was one session

of 20 subjects that lasted for 10 rounds.

In such instances, our theory suggests that it is possible to improve upon the performance of a
single-prize lottery using an appropriately designed tontine. Such a tontine will not only generate
higher contribution levels for the charity in the short-run, it will also attract a larger number of
donors which will aid the charity in future campaigns by expanding the size of the organization’s

warm list.
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4. Experimental design and results

We design an experiment to examine several of our theoretical predictions. Table 1 provides an
experimental design summary. We begin with a control treatment that induces symmetric
marginal per capita returns (MPCR’s) across agents in a voluntary contribution mechanism
(denoted Symmetric-VCM in Table 1). Our other VCM treatment introduces heterogeneous
valuations for the public good, but holds constant the average MPCR (denoted Asymmetric-
VCM). We cross these treatments with comparable treatments: symmetric single-prize lottery
(denoted Symmetric-SPL), asymmetric multiple-prize lottery (denoted Asymmetric-NPL),
single stage endogenous rebate (denoted Symmetric-REB and Asymmetric-REB), and two-
stage tontine (Symmetric-TON and Asymmetric-TON) treatments, leading to a total of
8 treatments. '

All treatments were conducted at the University of Maryland—College Park. The experiment
consisted of multiple sessions held on separate days with different subjects. Each session
consisted of two parts, the first to gather information on individual contribution decisions across
the various treatments. The second part was included to gather information on individual risk
postures. We describe, in turn, each part of the session.

4.1. Part 1

The first part of the experiment was designed to compare contribution levels across the
symmetric single-prize lottery, the asymmetric multiple-prize lottery, two variants of a historical
tontine, and the voluntary contribution mechanism. The voluntary contribution mechanism
treatment and the single-prize lottery treatment followed the instructions from Morgan and Sefton
(2000) to enable direct comparison. Table 1 summarizes the key features of our experimental
design and the number of participants in each treatment. Subjects were recruited on campus at the
University of Maryland—College Park using posters and emails that advertised subjects could
“earn extra cash by participating in an experiment in economic decision-making.” The same
protocol was used to ensure that each session was run identically.

Each subject was seated at linked computer terminals that were used to transmit all decision
and payoff information. All sessions were programmed using the software toolkit z-Tree
developed by Fischbacher (1999). The sessions each consisted of 12 rounds, the first two being
practice rounds that did not affect earnings. Once the individuals were seated and logged into the
terminals, a set of instructions and a record sheet were distributed. Subjects were asked to follow
along as the instructions (included in Appendix B and Appendix C) were read aloud.

At the beginning of each round subjects were randomly assigned to groups of four. Subjects
were unaware of their partners’ identities, but we aware that the groups changed every round.
Each round the subjects were endowed with 100 tokens. Their task was simple: decide how many
tokens to place in the group account and how many to place in their private account. After all
subjects made their choice, the computer would inform them of the total number of tokens placed
in their group account, the number of points from the group account and the private account, as
well as any bonus points that were earned. The payoff for the round was determined by summing
the points from the group account, points from the private account, and any bonus points received.

12 Data for the Symmetric-SPL, Asymmetric-NPL, and VCM treatments are from Lange et al. (2007). Data for the
remaining treatments are original to this study.
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The points for each round were determined as follows. For all sessions, subjects received 1
point for each token placed in their private account. In the four treatments with symmetric
valuations for the public good, they were awarded 0.3 points for each token placed in the group
account by themselves and the other members of their group. In the four treatments with
asymmetric valuations for the public good, subjects were awarded either 0.9 or 0.1 points for each
token placed in the group account.'® Additionally, each session had a different method for earning
bonus points.

We follow Morgan and Sefton (2000) by adding the value of the prize (80 tokens) to the group
account in the VCM. In the symmetric VCM session, all subjects therefore earned 24 bonus
points; in the asymmetric VCM session, subjects received either 72 or 8 bonus points. These
bonus points represent 80 tokens placed in the group accounts.

In the single-prize lottery sessions, group members competed for a lottery prize of 80 points.
Each subject’s chance of winning the prize was based on his or her contribution to the group
account compared to the aggregate number of tokens placed in the group account by all group
members. For the multiple-prize lottery sessions, group members competed for three lottery
prizes of values 50, 20, and 10 points, respectively. As in the single-prize lottery, subjects’
chances of winning the first prize were based on his or her share of group contributions. The three
prizes were awarded in order of value, and without replacement, meaning that in each round 3 of
the 4 group members would receive some bonus points.

For the single-stage rebate sessions, group members competed for an endogenously
determined share of the 80 bonus points. Each subjects’ share of this bonus was equal to his
or her contribution to the group account compared to the aggregate number of token placed in the
group account by all group members. Hence, any individual who contributed to the group account
was guaranteed to receive some bonus points.

For the two-stage tontine sessions, group members competed for a share of 80 bonus points
split evenly across two prizes: an initial allocation of 40 bonus points amongst all group members
and a second allocation of 40 bonus points amongst two randomly selected group members. Each
subjects’ share of the initial bonus was equal to his or her contribution to the group account
relative to the aggregate number of tokens placed in the group account. The remaining 40 bonus
points were allocated similarly amongst two randomly determined group members.'*

At the end of the experiment, one of the non-practice rounds was chosen at random to
determine earnings. Subjects were paid $1.00 for every 15 points earned in this randomly chosen
round. They recorded their earnings for Part I of the session and added those to their earnings for
Part 2 of the experiment to determine total earnings for the session.

4.2. Part 2

The second part of the session was designed to lend insights into subjects’ risk postures and
link those preferences to behavior in the public goods game described above. Attempting to

'3 In the asymmetric sessions, there was one agent in each group of four who had a valuation for the public account of
0.9 and three agents who had valuations of 0.1 for tokens placed in the group account. Individual valuations were held
constant throughout the session, and each group of four had exactly one member with the high valuation and three
members with the low valuation.

4 The two randomly selected group members were chosen by a computer using “survival” probabilities that were
independent of contribution decisions and identical for each individual in the session. Thus, each individual had a 50%
chance of being selected to compete for the additional bonus points.
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Table 2
Nash equilibrium predictions for risk neutral agents

Total group contributions Individual donation High value agents Low value agents
Symmetric-SPL 85.7 tokens 21.43 tokens
Symmetric-REB 85.7 tokens 21.43 tokens
Symmetric-TON 71.4 tokens 17.85 tokens
Asymmetric-NPL 94.1 tokens 68.7 tokens 8.5 tokens
Asymmetric-REB 85.7 tokens 75.6 tokens 3.2 tokens
Asymmetric-TON 102.2 tokens 80.9 tokens 7.1 tokens

Note: Cell entries provide the Nash equilibrium predictions for risk-neutral agents in our two lottery and four tontine
treatments. For example, in the symmetric single-prize lottery (Symmetric-SPL) each agent is predicted to contribute 21.43
tokens to the public account.

measure risk postures in one game and applying them to more closely explore behavior in another
is not novel to this study. Yet, as risk posture is not exogenously imposed on players (such as
MPCR’s are induced in the public goods game) an important caveat must be placed on the results
from such an exercise.

In this part of the session, the low-payoff treatment of Holt and Laury (2002) was replicated
with all values multiplied by a factor of four (see Appendix D for instructions).'> The treatment is
based on ten choices between paired lotteries which are included in the Appendix. The payoff
possibilities for Option A, $8.00 or $6.40, are much less variable than those for Option B, $15.40
or $0.40. The odds of winning the higher payoff for each of the options increase with each
decision.

Upon completion of Part 1 of the session, instructions and a decision sheet were handed out.
After the directions were read and questions were answered, the subjects were asked to complete
their decision sheets by choosing either A or B for each of the ten decisions. The subjects were
instructed that one of the decisions would be randomly selected ex post and used to determine
their payoffs. After each subject completed his or her decision sheet, a monitor would approach
the desk and randomly draw a card twice, once to select which of the ten decisions to use, and a
second time to determine what the payoff was for the option chosen, A or B, for the particular
decision selected.

After all the subjects’ payoffs were determined, they combined their payoff from Part 1 with
that of Part 2 to compute their final earnings. The final payoffs were then verified against the
computer records, and subjects were paid privately in cash for their earnings. Each of the sessions
lasted approximately 75 min.

4.3. Experimental results

Our experimental design enables us to test a number of theoretical predictions regarding
contribution levels. Table 2 summarizes the Nash equilibrium predictions for risk-neutral agents
in our various lottery and tontine treatments. We craft the results summary by first pooling the
data across subjects of all risk postures, but later explore the effects of risk preference on

'S The payoffs for the Holt and Laury experiment were multiplied by a factor of four so that the domain of earnings from
this experiment ($0.40, $15.40) would correspond with the domain of potential earnings from the public goods game
(81.20, $29.33).
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Table 3
Mean contribution levels by treatment
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All periods pooled

Final five periods only

Symmetric REB
Symmetric TON
Symmetric VCM
Symmetric SPL
Asymmetric REB (All Agents Pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric TON (All Agents Pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric VCM (All Agents Pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric NPL (All Agents Pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1

35.59 (28.8)
39.96 (27.13)
22.85 31.11)
42.65 (32.82)
33.30 (31.16)
60.91 (32.61)
24.1 (24.58)
35.46 (29.81)
61.28 (27.05)
26.86 (25.43)
25.4 (29.9)
50.85 (32.77)
16.92 (23.43)
41.01 (35.21)
64.16 (38.33)
33.3 (30.49)

32.7 (27.2)
39.52 (27.34)
13.34 (24.23)
40.29 (32.16)
27.94 (29.65)
59.8 (33.44)
17.32 (18.77)
33.54 (29.85)
60.96 (27.23)
24.4 (24.71)
20.59 (28.73)
48.13 (32.3)
11.41 (20.51)
38.88 (34.29)
64.62 (38.79)
30.30 (27.93)

Note: Cell entries provide the mean and standard deviation for each treatment. For example, in the VCM-symmetric
treatment the average token contribution was 22.845 with a standard deviation of 31.1 tokens.

contribution schedules. This approach permits a direct comparison of our data with results from
the voluminous public goods literature.

Our first hypothesis is that the lottery and tontine treatments introduce private incentives that
generate greater contributions than a voluntary contribution mechanism. Table 3 provides mean
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Fig. 1. Mean contribution levels (symmetric sessions only).
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Fig. 2. Mean contribution levels (asymmetric sessions only).

contribution levels for our experimental data, and Figs. 1 and 2 provide a graphical depiction of
the data. As can be seen in the table and the figures, contribution levels in the lottery and tontine
treatments are greater than those in either VCM treatment.

Measured over all treatments, contribution levels in the symmetric VCM and SPL treatments
were 22.85 and 42.65 tokens, respectively, a difference that is statistically significant at the
p<0.01 level using a Mann—Whitney test.'® Mean contribution levels in the symmetric rebate
and two-stage tontine treatment were 35.59 and 39.96 tokens. These means are significantly
different from the VCM average at the p<0.05 level using a Mann—Whitney test.

For the asymmetric sessions, we observe similar data patterns: mean contribution levels in the
asymmetric VCM (NPL) treatment were 25.4 (41) tokens. Mean contributions in the asymmetric
TON (REB) treatments were 35.46 tokens (33.3 tokens), respectively. The difference in mean
contributions between both the NPL and 2-Stage tontine (TON) and the VCM treatment are
statistically significant at the p<0.05 level. The difference in mean contribution levels between
the REB treatment and the VCM treatment is statistically significant at the p<0.10 level. These
results also hold if we restrict attention to the final five periods of play. Combined, these data
generate our first result:

Result 1. Linking charitable donations with the provision of a private prize generates greater
contributions than a VCM. The dominance of such mechanisms hold whether contributions affect

' The unit of observation for the Mann—Whitney test is the average contribution level for each agent across the ten
rounds. Thus, each subject provides one data point in these tests.
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the probability an agent wins a prize of given value (as in charitable lotteries) or the proportion of
a fixed return the agent receives (as in the tontine).

The first part of Result 1 is similar to the findings in Morgan and Sefton (2000), Dale (2004)
and Landry et al. (2006), whereas we are unaware of any antecedent to the second part of Result 1.

4.4. Comparing tontines with single and multiple period payouts

Our theoretical model suggests that the optimal tontine for agents with identical preferences for
a public good consists of a degenerate payment schedule wherein all agents receive a fixed “prize”
amount in the first stage equal to a percentage of their total contribution. For symmetric agents,
any tontine that allocates payments of a fixed amount across multiple stages generates strictly
lower contributions to the public good than this optimal rebate scheme. In our experimental
setting, we would thus expect contribution levels in the symmetric REB treatment to exceed those
realized in the symmetric two stage tontine (TON) treatment.

In contrast, our theoretical model shows that the optimal tontine allocates payments across
multiple stages when individual preferences for the public good are sufficiently heterogeneous.
Under the parameter values employed in our asymmetric sessions, the optimal tontine splits
payments into different prizes. Hence, as suggested in Table 2, we would expect contribution levels
in the asymmetric two-stage tontine to exceed those realized in the asymmetric REB treatment.

Table 3 provides mean contribution levels for both the symmetric and asymmetric tontine sessions.
Averaged over all periods, mean contribution levels in the asymmetric TON sessions were 35.46
tokens — approximately 2.16 tokens greater than those observed in the asymmetric REB treatment
(33.30 tokens). Restricting the analysis to the final five periods of the experiment, the difference in
average contribution levels between the asymmetric TON and REB treatments is 5.6 tokens (33.54
tokens versus 27.94 tokens). While the former difference is not statistically significant at any
meaningful level, the latter difference is significant at the »<0.10 level using a Mann—Whitney test.

We observe similar data patterns in our symmetric tontine sessions. Averaged across all (the
final five) periods, mean contributions in the symmetric TON sessions were 39.96 tokens (39.52
tokens). For the symmetric REB sessions, mean contributions for all (the final five) periods were
35.59 tokens (32.7 tokens). While the overall difference of 4.37 tokens is not statistically
significant at any meaningful level, the 6.82 token difference between the treatments for the final
five periods is significant at the p<0.10 level. Combined these data lead to our second result:

Result 2. Contributions in a tontine that allocates payments over two-stages weakly dominate
those of a tontine that allocates the total prize to all agents relative to their contributions. This
weak dominance holds whether agents have symmetric or asymmetric values for the public good.

We thus find mixed support for our theory. The dominance of the 2-Stage tontine (TON) in
cases of asymmetric preferences is consistent with Proposition 5 of our theoretical model, but the
finding that contributions in the symmetric case are greater in the TON than in the REB is at odds
with Proposition 1.

4.5. Tontines, lotteries, and risk-aversion

The above analysis follows the spirit of the literature in that all agents are pooled and a series of
hypotheses are tested jointly-in this case, risk assumptions are met and direction of treatment
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Table 4

Mean contribution levels by risk preference

Risk loving and risk neutral agents

Highly risk averse agents

Symmetric REB
Symmetric TON
Symmetric VCM
Symmetric SPL
Asymmetric REB (All agents pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric TON (All agents pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric VCM (All agents pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1
Asymmetric NPL (All agents pooled)
Agents with MPCR=0.9
Agents with MPCR=0.1

20 (25.05) N=7
37.55 (26.5) N=11
29.27 31.17) N=7
49.39 (33.56) N=7
29.84 (35.4) N=9
64.65 (38.38)

19.9 (27.56)

40.58 (29.59) N=10
58.6 (24.96)

28.57 (25.19)

23.95 (26.07) N=8
43.73 (22.71)

12.08 (20.17)

49.26 (36.52) N=12
76 (30.7)

35.89 (31.63)

35.35 (27.81) N=21
37.38 (26.58) N=16
18.9 (29.11) N=9
40.24 (32.31) N=25
31.46 (26.92) N=21
53.64 (28.07)

24.53 (22.51)

35.31 (29.69) N=22
64.15 (30.24)

28.91 (25.55)

28.86 (33.05) N=18
55.12 (37.11)

18.75 (24.94)

31.68 (30.60) N=17
56.67 (35.46)

26.33 (26.7)

Note: Cell entries provide the average contribution levels and associated standard deviations by revealed risk posture for
our experimental treatments.

effects are tested. We can examine our data at a level deeper based on our theoretical predictions
and subjects’ revealed risk preference in Part II of our experiment. Our categorizations of risk
preference are based on the number of safe choices “Option A” selected by the agent in the Holt/
Laury experimental design. Under the basic Holt/Laury design, an increase in the number of safe
alternatives selected by an agent implies an increase in her implied risk preference.

Our theory provides four testable implications of risk-aversion on contributions in our
experimental treatments: (i) contributions in the rebate tontine are independent of individual
risk preference, (ii) contributions in the lottery treatments are strictly decreasing in the level
of risk-aversion, (iii) contributions in the rebate tontine dominate those observed in any
lottery when agents are risk-averse and have symmetric preferences for the public good, and
(iv) independent of risk preference, contributions in our 2-stage tontine dominate those
observed in our multiple-prize lottery when agents have asymmetric preferences for the public
good. Table 4 summarizes mean contribution levels across our experimental treatments for
agents classified as risk-loving/risk-neutral and those classified as highly risk-averse in the
Holt/Laury experiment.'’

Perusal of the table provides a number of insights consistent with our theoretical predictions.
First, mean contributions for agents classified as risk-loving/risk-neutral in the symmetric, single-
prize lottery are approximately 23% greater than those for agents classified as highly risk-averse
(49.39 tokens versus 40.24 tokens). We observe a similar relationship between risk preference and
contributions in the asymmetric, multi-prize lottery treatments: the mean contribution level for
risk-loving/risk-neutral agents (49.26 tokens) is approximately 55.6% greater than the level for

'7 This was done as a first attempt to place agents in cells that our theory would predict would lead to behavioral
differences. In this case, we define “Highly” risk-averse agents as those who select the safe lottery (Lottery A) in at least 6
choice occasions. This corresponds to an implied CARA preference of approximately 0.08 or higher. Agents who are
risk-loving/neutral play the safe lottery 4 or fewer times. Thus, the omitted group (those who select the safe lottery 5
times) has an implied CARA preference of 0.03.
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Table 5
Individual contribution decisions — symmetric sessions

Tokens contributed model A Tokens contributed model B
Constant — symmetric VCM is baseline 22.84%* (4.18) 22.84%* (4.16)
Symmetric rebate treatment 12.75%% (5.11) 11.92 (11.80)
Symmetric 2 — stage tontine treatment 17.11%* (5.21) 14.61 (11.83)
Single-prize lottery treatment 19.80%* (5.21) 31.24%* (11.97)
HL count in symmetric rebate treatment 0.14 (1.79)
HL count in symmetric 2-stage tontine treatment 0.47 (2.01)
HL count in single-prize lottery treatment —2.09* (1.27)
Number of observations 1320 1320
Number of agents 132 132
Individual random effects Yes Yes
Log likelihood -6212.2 —6211.6

** Denotes statistical significance at the p<0.05 level.

* Denotes statistical significance at the p<0.10 level.

Note: Cell entries provide parameter estimates from a linear random effects regression of individual contribution decisions.
Standard errors are in parentheses. Importantly treatment indicators in Model 2 represent the predicted contribution levels
for an infinitely risk-loving agent — i.e., an agent with an HL count of zero — whereas the treatment indicators in Model 1
are pooled over agents of all risk posture and represent the predicted contribution level of the representative agent in the
associated treatment.

highly risk-averse agents (31.68 tokens). Second, in both the symmetric and asymmetric REB
sessions, mean contribution levels for agents classified as highly-risk averse are only slightly
greater than those observed for risk-loving/risk-neutral counterparts suggesting risk posture has
no discernable impact on contribution decisions.'® Finally, for agents classified as highly risk-
averse, contributions are approximately 11.5% greater in the asymmetric 2-stage tontine treatment
than the asymmetric multi-prize lottery (35.31 tokens versus 31.68 tokens).

Yet, Table 4 highlights other insights that are inconsistent with our theoretical predictions. First,
the average contribution for risk-averse agents in the symmetric rebate treatment is approximately
13.8% less than that for risk-averse counterparts in the symmetric single-prize lottery. Second,
independent of risk posture, average contributions in the symmetric rebate treatment are less than
those realized in the symmetric 2-stage tontine. Finally, average contributions for risk-neutral
agents in the asymmetric 2-stage tontine are approximately 21.4% less (40.58 versus 49.26 tokens)
than those for risk-neutral counterparts in the asymmetric multi-prize lottery.

To augment these unconditional insights, we estimate a linear random effects regression model
of individual contribution levels as:"’

Cy = V(Zit) + &iry

where C;; is the contribution level of the ith agent in period z. Z; includes treatment dummy
variables, the interaction of the treatment dummies with an indicator for agents with a high

'8 Yet, there is an approximate 15 token difference in the contribution levels of risk-neutral and risk-averse agents in our
symmetric rebate sessions. This difference is driven predominantly by three risk-neutral agents in this treatment that free-ride in
at least seven of the ten rounds. If we exclude these individuals (or control for individual level heterogeneities as in our
regression analysis) there are no discernable differences in contribution levels across risk-neutral and risk-averse counterparts.

' In the regression models we use the number of safe choices to indicate individual risk preference. Results are
qualitatively similar if we run the model using three categorical variables for risk-loving/risk-neutral agents (CARA less
than or equal to 0), risk-averse (CARA 0.01-0.079), and highly risk-averse (CARA>0.079).
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Table 6

Prediction contribution levels — risk averse agents
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Rebate tontine

Single-prize lottery

2-stage tontine

Holt—Laury count=4
Holt—Laury count=5
Holt-Laury count=6
Holt—Laury count="7
Holt-Laury count=8
Holt—Laury count=9
Holt-Laury count=10

35.32 [26.38-44.26]
35.46 [28.80-42.12]
35.60 [29.83-41.36]
35.74 [28.9-42.58]

35.88 [26.66-45.09]
36.02 [23.87-48.17]
36.16 [20.82-51.49]

45.73 [37.40-54.05]
43.63 [37.29-49.98]
41.54 [35.14-47.95)
39.45 [30.98-47.92]
37.36 [25.86-48.86]
35.27 [20.35-50.19]
33.18 [14.66-51.70]

39.35 [31.45-47.24]
39.82 [33.65-45.99]
40.30 [33.59-47.01]
40.77 [31.66-49.89]
41.24 [28.90-53.59]
41.72 [25.82-57.62]
42.19 [22.59-61.80]

Note: Cell entries provide the predicted contribution level and 95% confidence interval (in brackets). Cell entries can be
read as follows, an agent with a Holt—Laury count of six in our Rebate Tontine treatment is predicted to contribute 35.6
tokens to the public account. The associated 95% confidence interval for such an agent is 29.83 to 41.36 tokens.

(MPCR=0.9) or low (MPCR=0.1) valuation for the public good, and the interaction of the
treatment indicators with the number of safe alternatives agent i selected in the Holt—Laury
experiment (a proxy for individual risk preference). We specify the error structure as &;,=o;+u;
where the random effects o; capture important heterogeneity across agents that would be left
uncontrolled in a standard cross-sectional model.

Table 5 provides results for this model across two different specifications for our symmetric
treatments. Results from these models provide mixed support for our theory. First, as noted in
column 1, linking contributions with the provision of a private prize generates greater
contribution levels than a voluntary contribution mechanism; average contributions in the rebate,
2-stage tontine, and single-prize lottery treatment are significantly greater than in our baseline
VCM at the p<0.05 level. Further, contributions in the rebate treatment are independent of risk
preference: the estimated coefficient on the interaction of risk preference and the indicator for the
optimal rebate in column 2 is not significant at any meaningful level. However, lottery con-
tributions are decreasing in the level of individual risk-aversion: the estimated coefficient on the
interaction of risk preference and the indicator for the single-prize lottery is negative and
significant at the p<0.10 level. Thus, while the predicted contributions for an infinitely risk-
loving individual are approximately 19.32 tokens greater in the SPL treatment than in the REB
treatment, this difference falls by approximately 2.23 tokens with every one unit increase in our
proxy for individual risk posture (the Holt—Laury count).

One insight garnered from Table 5 not predicted by our theory is the apparent superiority of the
single-prize lottery as a fundraising mechanism. As noted in column 1, average contributions in
the SPL treatment are approximately 7 tokens greater than those observed in the symmetric rebate
treatment. We observe similar insights when we include individual specific controls for risk
posture in column 2. Indeed, contributions in the symmetric single-prize lottery are greater than
those in the symmetric rebate treatment for any agent who selects the safe option on eight or fewer
choice rows in the Holt—Laury experiment.”’ Combined, these insights lead to our third result:

20 This insight can be obtained directly from examining Table 6, which presents predicted contribution levels and
associated 95% confidence intervals across the various symmetric treatments. Cell entries in Table 6 are calculated using
parameter estimates from Column 2 of Table 5 and suggest that any agent with an HL count less than 8.67 contributes
more in the SPL than the REB treatment. In economic terms, this implies that any agent with a CARA preference of
approximately 0.2 or less will contribute more in the SPL.
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Result 3. Risk posture has a critical influence on the relative performance of charitable lotteries
and tontines. Yet contributions in the single-prize lottery weakly dominate those in the symmetric
rebate for all but extreme levels of risk-aversion.

Data from our symmetric sessions thus provide mixed support for the theoretical model in
Section 3. The first part of this result is consistent with Proposition 3, whereas the second part
contradicts the predicted superiority of the rebate mechanism for all levels of risk-aversion.
However, since the 95% confidence intervals in Table 6 overlap for all levels considered, we are
unable to make definitive statements regarding the dominance of any particular fundraising
instrument.

Table 7 provides a similar set of regression models using data from our asymmetric treatments.
Because marginal values for the public good now differ, we include controls for those in the
regression model. Perusal of the data in Table 7 highlights a number of interesting insights. First,
as illustrated in column 1, average contribution levels for both low and high value agents are
greater under the 2-stage tontine than the rebate treatment. This is consistent with our theoretical
prediction that the optimal tontine for agents with asymmetric preferences lets a randomly drawn
subset of players compete for part of the total prize. Furthermore, contributions in the REB
treatment are independent of risk posture consistent with our theoretical model.

One departure from our theoretical predictions is the apparent superiority of the multi-prize
lottery relative to the 2-stage tontine for high value agents. As shown from estimation of Model A,

Table 7
Individual contribution decisions — Asymmetric sessions

Tokens contributed Model A Tokens contributed Model B
Model constant — low value agent in VCM is baseline  16.92** (3.89) 16.92** (3.84)

High value agent in VCM treatment

Low value agent in rebate treatment

High value agent in rebate treatment

Low value agent in 2-stage tontine

High value agent in 2-stage tontine

Low value agent in multi-prize lottery

High value agent in multi-prize lottery

HL count of low value agent in rebate treatment
HL count of high value agent in rebate treatment
HL count of low value agent in 2-stage tontine
HL count of high value agent in 2-stage tontine
HL count of low value agent in multi-prize lottery
HL count of high value agent in multi-prize lottery
Number of observations

Number of agents

Individual random effects

Log likelihood

33.93%* (7.79)
7.18 (5.36)
43.99%* (7.46)
9.94* (5.36)
44.36** (7.46)
16.38%* (5.36)
47.24%* (7.46)

1400
140

Yes
—6427.1

33.93%* (7.68)
11.44 (12.26)
68.66%* (28.13)
6.09 (13.27)
46.33%* (17.73)
25.71%* (14.55)
72.29%* (17.07)
—0.78 (2.01)
—4.93 (5.43)
0.65 (2.05)
—0.43 (3.54)
—1.78 (2.58)
—5.78%* (3.55)
1400

140

Yes

—6424.9

** Denotes statistical significance at the p<0.05 level.

* Denotes statistical significance at the p<0.10 level.

Note: Cell entries provide parameter estimates from a linear random effects regression of individual contribution decisions.
Standard errors are in parentheses. Importantly treatment indicators in Model 2 represent the predicted contribution levels
for an infinitely risk-loving agent — i.e., an agent with an HL count of zero — whereas the treatment indicators in Model 1
are pooled over agents of all risk posture and represent the predicted contribution level of the representative agent in the
associated treatment.
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such agents contribute an average of approximately 2.88 tokens more in the multiple prize lottery
treatment than their counterparts contribute in the tontine treatment. Yet, such differences depend
critically on individual risk preference, as revealed in Model B, where lottery contributions are
found to be strictly declining in individual risk posture. In this model, the estimated coefficient on
the interaction of the proxy for risk preference and the indicator for a high valued agent in the
multi-prize lottery is negative and statistically significant at the p<0.10 level. Thus, while an
infinitely risk-loving high value agent would contribute approximately 26 more tokens in the
multiple-prize lottery than in the 2-stage tontine, this difference falls by 5.35 tokens for every unit
increase in our proxy for individual risk posture. In fact, as shown in Table 8, risk-averse agents
are predicted to contribute more in the 2-stage tontine treatment than would a counterpart agent in
the multi-prize lottery. Combined, this leads to a fourth result:

Result 4. Contributions in the asymmetric 2-stage tontine weakly dominate those for the
asymmetric rebate tontine for both high and low value agents. Contributions in the asymmetric
2-stage tontine weakly dominate those for the asymmetric multi-prize lottery when agents are
risk-averse.

The first part of the result is consistent with the implications of proposition 5, which suggests
that the optimal tontine for asymmetric individuals splits prize payments and selects randomly a
subgroup of players to compete over part of the prize. The second part of the result provides
mixed support for Proposition 6 which predicts the superiority of the 2-stage tontine independent
of risk posture.

4.6. Tontines, lotteries, and net public good provision

Thus far we have focused on individual contributions across the various treatments. A further
prediction of our theory is that both tontines and lotteries generate contributions in excess of total
prize payments and can increase the total public good provision. Recall that in our lottery and
tontine treatments the exogenous prize amount was 80 tokens. Accordingly, we must account for
these prize values by subtracting 80 tokens from total group contributions in these treatments.
Following Morgan and Sefton (2000), we provide Table 9 which summarizes net public
good provision and the associated 95% confidence interval across our various treatments for

Table 8
Predicted contribution levels — risk neutral agents

Holt-Laury count=4  Holt—Laury count=5  Holt-Laury count=6  Holt-Laury count=7

Low value agent in 25.61 [15.09-36.12]  26.26 [18.24-34.27] 2691 [19.81-34.01]  27.56 [19.25-35.87]
2-stage tontine

Low value agent in 35.53 [26.00-45.06]  33.76 [26.54-40.98]  31.99 [23.96-40.01]  30.21 [18.1-41.52]
multi-prize lottery

High value agent in ~ 61.52 [48.64-74.39]  61.08 [48.42-73.76]  60.65 [44.79-76.51]  60.22 [39.28-81.17]
2-stage tontine

High value agent in ~ 66.08 [53.58-78.59]  60.30 [47.16-73.44]  54.53 [37.61-71.43]  48.74 [26.46-70.01]
multi-prize lottery

Note: Cell entries provide predicted contribution levels for an agent with a given valuation (high or low) for the public
good and a given risk proxy. The associated 95% confidence interval for the prediction is in brackets.
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Table 9
Net public good provision — final round only

Net provision Difference from VCM
Symmetric sessions
VCM 59.0 [14.6-103.4]
Single-prize lottery 66.4 [9.1-123.8] 7.4 (0.58)
Rebate 25.2 [6.9-43.5] —23.8(0.12)
2-stage tontine 56.3 [19.9-92.7] —2.7 (0.46)
Asymmetric sessions
VCM 75.4 [34.4-116.3]
Multiple-prize lottery 77.1 [44.7-109.5] 1.7 (0.54)
Rebate 32.2 [0.3-64.1] —43.2 (0.03)
2-stage tontine 26.3 [0.4-52.3] —49.1 (0.02)

Note: Cell entries in Column 1 provide the average net provision level of the public good in round ten for each of our
experimental treatments. The associated 95% confidence intervals are in brackets. Column 2 provides the difference in
average provision levels between the associated row treatment and the VCM treatment. The p-value for a one-sided
Wilcoxon Rank-Sum test that the row value is greater than the net provision level in the VCM treatments is given in
parentheses.

the final round of play. We also provide results from a Wilcoxon Rank-Sum test on whether net
public good provision is larger in the respective lottery and tontine treatments than the VCM
treatments.

Data in Table 9 provide mixed support for our theoretical model: both tontines and lotteries
generate contributions in excess of total prize payments. Further, the data highlight the power of
the lottery mechanism: in both comparisons the data indicate that lotteries provide greater levels
of the public good than the comparable VCM. Yet, this enthusiasm should be tempered, as the
noisiness of the data renders all statistical tests insignificant. These results are in line with those in
Morgan and Sefton (2000), though they do find some marginal significance. However, Table 9
highlights a potential caveat concerning the superiority of tontines as a fund-raising mechanism:
net public good provision in our various tontine treatments is /ess than that observed in a
comparable VCM with these differences being statistically significant in our asymmetric sessions.
Yet, given that the tontine is able to generate greater levels of participation than the VCM,
fundraisers might well accept this short-run revenue tradeoff.

5. Concluding remarks

This article provides a theoretical exploration of tontines as a fundraising instrument. Even
though historically tontines have been a popular method of financing public goods—the name
“tontine” remains prominently displayed on several publicly funded projects around the world—
little is known about their potential benefits when applying their structure to provide incentives
for voluntary giving.

In this study, we characterize a class of fundraising mechanisms inspired by historical tontines.
By deriving the optimal tontine and formally linking the tontine to a popular modern fundraising
scheme used by both government and charitable fundraisers—Ilotteries—we are able to show the
equivalence of optimal tontines and single-prize lotteries for symmetric and risk-neutral agents.
Upon relaxing the assumption of risk-neutrality and allowing for risk-aversion in a model with
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symmetric agents, we are able to show that contributions under the optimal tontine strictly
dominate contributions raised under any lottery type. Further, the design of an optimal tontine is
independent of underlying risk posture and generates contributions that weakly dominate those of
any lottery.

We then extend the model to consider a set of risk-neutral agents with asymmetric valuations
for the public good. Insights from this model are used to characterize situations when a tontine
that awards prizes to a randomly determined subset of agents can yield higher contribution levels
than the optimal lottery. Further, we show how the chance of being among the few competing
players in such a multi-stage tontine can elicit contributions from agents who would not
participate in the optimal lottery. Thus, if a fundraiser seeks to collect names of potential
contributors for future fundraising drives, the tontine has an additional “hidden” advantage in that
it increases participation rates.

We test our theory using a series of laboratory treatments and find evidence in favor of many of
our theoretical predictions. Perhaps most importantly, gross contributions in both the rebate and
the two-stage tontine treatments dominate those of the VCM, and are sufficient to cover total prize
payments. Moreover, we find that risk posture and asymmetries in underlying marginal valuations
for the public good are critical components determining the optimal fundraising instrument
amongst the various forms of charitable lotteries and tontines considered in our experiment. In
this spirit, our results add to the growing literature on the demand side of charitable fundraising
and the private provision of public goods.

Appendix A. Proofs

Proof of Proposition 1. For any tontine, the equilibrium is given by the first order condition (2)
for the set of participating players. We can rewrite Eq. (2) as follows:
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Since an optimal tontine must distribute all the prize money, summing over all participating
players gives

BY b

W e o

i

i

B—b;

Here the last inequality follows from the convexity of in b;. We obtain

1 n—1

Bs— "7~
1—h'(®) n

(A3)

Comparing Eq. (A3) and condition (4), we immediately see that the pure rebate scheme
maximizes the contribution to the tontine. [

Proof of Proposition 4. Since a player can only win part of a prize if his or her contributions are
positive, a player facing opponents with zero contributions could potentially choose an arbitrarily
small but positive contribution level to secure the total amount distributed among this set of
players. To deal with this case, we assume to the contrary of the claim of Proposition 4 that there is
a set S; of k, players with B(S,)<e for all £>0. Consider the agent i< S, with the minimal
contribution. Then, the first order condition of this agent is given by

>(S,,S_ )i’ (®) B ' (9) +Pt%]
>7(S, S_)u;’ (®) __1 R () + P, W}
(S, S, )ui' (@) :_1 (o) +P’ktg;,1]

which is larger than zero for small €, implying a contradiction to the assumption. It follows that
we have an interior solution »;>0 for at least one i€ S,. [

Proof of Proposition 5. We analyze the tontine given by condition (5) with P,=0 fort=2,...n—2,
P,_1=¢, Py=P—¢). With Proposition 4, a set Q, of k>n—1 agents contributes for ¢>0. Let us
define Q) as the set of players who contribute for arbitrarily small >0 but not for ¢ =0, similarly
ky=#Q,. The first-order conditions (1) can be rewritten as:

B —b; 2¢ b;
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We study the derivative of B with respect to ¢ at ¢=0. For i € Q,, differentiation of Eq. (A4)
yields
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Using the first order condition (A4) for e=0, we obtain
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It remains to determine the change in contributions from new participants, i.e. B'(2;) when
marginally increasing ¢=0. For i€ Q;=0,\Q,, the first order condition (A4) implies
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Therefore, plugging Egs. (A6) and (A7) in Eq. (AS5), a sufficient condition for B’>0 is given by
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Appendix B. Experimental instructions — Symmetric TON treatment
B.1. General rules

This is an experiment in economic decision making. If you follow the instructions carefully
and make good decisions you can earn a considerable amount of money. You will be paid in
private and in cash at the end of the session.

It is important that you do not talk, or in any way try to communicate, with other people during
the session. If you have a question, raise your hand and a monitor will come over to where you are
sitting and answer your question in private.

The experiment will consist of 12 rounds. The first 2 rounds will be practice. In each round,
you will be randomly assigned to a group of 4 people. These groups will change each round. You
will not know which of the other people in the room are in your group and the other people in the
session will not know with whom they are grouped in any round.

In each round, you will have the opportunity to earn points. At the end of the session, one of
the non-practice rounds will be randomly selected and you will be paid in cash an amount that will
be determined by the number of points you earn during the randomly selected round.

B.2. Description of each round

At the beginning of the first trial round a subject number will be given on your terminal.
Record that number on your record sheet. Each round you will be given an endowment of 100
tokens. At the beginning of each round, the computer will prompt you to enter the number of
tokens you want to contribute to the group account. Enter a whole number between 0 and 100,
record the number in column (b) on your record sheet, and click continue. Any tokens you do not
place in your group account are placed in your private account. Once your decision is recorded, it
cannot be changed. After everyone in your group has recorded their decisions, a screen will
appear informing you of the number of tokens contributed to the group account by all group
members, whether any bonus points have been earned, and your profit for the round. Record the
information from that screen onto your record sheet as follows:

Tokens in private account Column A

Your contribution to group account Column B
Total tokens in group account Column C
Private account points Column D

Group account points Column E

Bonus 1 points Column F

Bonus 2 points Column G

Profit for round Column H

Once everyone has recorded his or her information, the next round will begin.
B.3. How earnings are determined
The number of points you earn in the round will be determined as follows. For each token

placed in your private account you will earn 1 point. This amount is recorded in column (d) on
your record sheet. You will receive 0.3 points for each token placed in your group account by you
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and the other people in your group. The group account points are recorded in column (e) of the
record sheet.

In addition, at the end of each round you will receive a share of 80 bonus points. At the end of
each round, we will allocate Bonus 1 (40 points) amongst all group members and Bonus 2 (the
remaining 40 points) amongst two randomly selected group members. Your share of Bonus 1 is
determined by how much you contributed to the group account in that round. Specifically, your
share of the 40 points will be equal to the number of tokens you place in the group account,
divided by the total number of tokens placed in the group account by you and the other people in
your group. For example, if your contribution is 50% of the total tokens placed in the group
account, you will receive 50% of the initial bonus (20 points). If no tokens are placed in the group
account, each member of the group will receive an equal share of Bonus 1 points.

The remaining 40 bonus points (Bonus 2) will be allocated in a similar manner amongst two
group members randomly selected by a computer. The probability that any individual is
selected to compete for Bonus 2 is independent of contribution decisions. Since these
probabilities are identical for each individual, every member of a group has a 50% chance of
being selected to compete for Bonus 2 and a one in six chance of being matched with any
specific group member.

If you and another group member are randomly selected by the computer, your share of the 40
points from Bonus 2 will be equal to the number of tokens you place in the group account divided
by the total number of tokens placed in the group account by you and the other selected
individual. For example, if you place 40% of the tokens into the group account and the remaining
three group members each place 20% of the tokens into the group account, you will receive 67%
of Bonus 2 (27 points) if you are one of the two individuals selected by the computer.

Record any Bonus 1 points earned in column (f) on your record sheet and any Bonus 2 points
earned in column (g) on your record sheet. Your profit for the round is computed by summing the
private account points, the group account points, the Bonus 1 points, and the Bonus 2 points. This
total is recorded in column (h) on the record sheet. At the end of the session we will draw a ticket
from the box. In the box there is a numbered ticket for each round played (1—10). The number on
the ticket that is drawn will determine the round for which you will be paid. Record the selected
round and then your profit for that round in the space provided at the bottom of the record sheet.
You will receive $1 in cash at the end of the session for every 15 points you earn in that round.
This amount is recorded in the space titled earnings.

Appendix C. Experimental instructions — Asymmetric REB treatment
C.1. General rules

This is an experiment in economic decision making. If you follow the instructions carefully
and make good decisions you can earn a considerable amount of money. You will be paid in
private and in cash at the end of the session.

It is important that you do not talk, or in any way try to communicate, with other people during
the session. If you have a question, raise your hand and a monitor will come over to where you are
sitting and answer your question in private.

The experiment will consist of 12 rounds. The first 2 rounds will be practice. In each round,
you will be randomly assigned to a group of 4 people. These groups will change each round. You
will not know which of the other people in the room are in your group and the other people in the
session will not know with whom they are grouped in any round.
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In each round, you will have the opportunity to earn points. At the end of the session, one of
the non-practice rounds will be randomly selected and you will be paid in cash an amount that will
be determined by the number of points you earn during the randomly selected round.

C.2. Description of each round

At the beginning of the first trial round a subject number will be given on your terminal.
Record that number on your record sheet. At the beginning of the session, you will be assigned a
valuation for tokens placed in the group account of either 0.9 or 0.1 — in each round you will be
matched in groups such that one member of each group has a valuation of 0.9 and the other three
have valuations of 0.1. For example, if there are 24 people in the session 6 would have a valuation
of 0.9 and the other 18 would have valuations of 0.1. In each round, the six groups would have
one person with the high valuation and three others with the low valuation. These groups will be
randomly rematched in every period but each group will contain exactly one person with the high
valuation for the group account and three with the low valuation for the group account. Your
valuation will be held constant throughout the session.

Each round you will be given an endowment of 100 tokens. At the beginning of each round,
the computer will prompt you to enter the number of tokens you want to contribute to the group
account. Enter a whole number between 0 and 100, record the number in column (b) on your
record sheet, and click continue. Any tokens you do not place in your group account are placed in
your private account. Once your decision is recorded, it cannot be changed. After everyone in
your group has recorded their decisions, a screen will appear informing you of the number of
tokens contributed to the group account by all group members, whether any bonus points have
been earned, and your profit for the round. Record the information from that screen onto your
record sheet as follows:

Tokens in private account Column A

Your contribution to group account Column B
Total tokens in group account Column C
Private account points Column D

Group account points Column E

Bonus points Column F

Profit for round Column G

Once everyone has recorded his or her information, the next round will begin.
C.3. How earnings are determined

The number of points you earn in the round will be determined as follows. For each token
placed in your private account you will earn 1 point. This amount is recorded in column (d) on
your record sheet. You will receive either 0.9 or 0.1 points (depending upon your valuation for the
group account) for each token placed in your group account by you and the other people in your
group. The group account points are recorded in column (e) of the record sheet.

In addition, at the end of each round you will receive a share of 80 bonus points. Your share of
the bonus points is determined by how much you contributed to the group account in that round.
Specifically, your share of the bonus points will be equal to the number of tokens you place in the
group account, divided by the total number of tokens placed in the group account by you and the
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other people in your group. For example, if your contribution is 50% of the total tokens placed in
the group account, you will receive 50% of the bonus (40 points). If no tokens are placed in the
group account, each member of the group will receive an equal share of the bonus. Record any
bonus points earned in column (f) on your record sheet. Your profit for the round is computed by
summing the private account points, the group account points, and the bonus points. This total is
recorded in column (g) on the record sheet.

At the end of the session we will draw a ticket from the box. In the box there is a numbered
ticket for each round played (1-10). The number on the ticket that is drawn will determine the
round for which you will be paid. Record the selected round and then your profit for that round in
the space provided at the bottom of the record sheet. You will receive $1 in cash at the end of the
session for every 15 points you earn in that round. This amount is recorded in the space titled
earnings.

Appendix D . Instructions—Part II (risk aversion measures)

Record your subject number from the previous part on your decision sheet. Your decision
sheet shows ten decisions listed on the left. Each decision is a paired choice between Option A
and Option B. You will make ten choices and record these in the final column, but only one of
them will be used in the end to determine your earnings. Before you start making your ten
choices, please let me explain how these choices will affect your earnings for this part of the
experiment.

We will use part of a deck of cards to determine payoffs; cards 2—10 and the Ace will represent
“1”. After you have made all of your choices, we will randomly select a card twice, once to select
one of the ten decisions to be used, and a second time to determine what your payoff is for the
option you chose, A or B, for the particular decision selected. (After the first card is selected, it
will be put back in the pile, the deck will be reshuffled, and the second card will be drawn). Even
though you will make ten decisions, only one of these will end up affecting your earnings, but you
will not know in advance which decision will be used. Obviously, each decision has an equal
chance of being used in the end.

Now, please look at Decision 1 at the top. Option A pays $8.00 if the Ace is selected, and it
pays $6.40 if the card selected is 2—10. Option B yields $15.40 if the Ace is selected, and it pays
$0.40 if the card selected is 2—10. The other Decisions are similar, except that as you move down
the table, the chances of the higher payoff for each option increase. In fact, for Decision 10 in the
bottom row, the cards will not be needed since each option pays the highest payoff for sure, so
your choice here is between $8.00 and $15.40.

To summarize, you will make ten choices: for each decision row you will have to choose
between Option A and Option B. You may choose A for some decision rows and B for other rows,
and you may change your decisions and make them in any order. When you are finished, we will
come to your desk and pick a card to determine which of the ten Decisions will be used. Then we
will put the card back in the deck, shuffle, and select a card again to determine your money
earnings for the OPTION you chose for that Decision. Earnings for this choice will be added to
your previous earnings, and you will be paid all earnings in cash when we finish.

So now please look at the empty boxes on the right side of the record sheet. You will have to
write a decision, A or B in each of these boxes, and then the card selection will determine which
one is going to count. We will look at the decision that you made for the choice that counts, and
circle it, before selecting a card again to determine your earnings for this part. Then you will write
your earnings in the blank at the bottom of the page.
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Are there any questions? Now you may begin making your choices. Please do not talk with

anyone else while we are doing this; raise your hand if you have a question.

Decision sheet

Option A

Option B

Decision

1/10 of $8.00, 9/10 of $6.40
2/10 of $8.00, 8/10 of $6.40
3/10 of $8.00, 7/10 of $6.40
4/10 of $8.00, 6/10 of $6.40
5/10 of $8.00, 5/10 of $6.40
6/10 of $8.00, 4/10 of $6.40
7/10 of $8.00, 3/10 of $6.40
8/10 of $8.00, 2/10 of $6.40
9/10 of $8.00, 1/10 of $6.40

1/10 of $15.40, 9/10 of $0.40
2/10 of $15.40, 8/10 of $0.40
3/10 of $15.40, 7/10 of $0.40
4/10 of $15.40, 6/10 of $0.40
5/10 of $15.40, 5/10 of $0.40
6/10 of $15.40, 4/10 of $0.40
7/10 of $15.40, 3/10 of $0.40
8/10 of $15.40, 2/10 of $0.40
9/10 of $15.40, 1/10 of $0.40

10/10 of $8.00, 0/10 of $6.40 10/10 of $15.40, 0/10 of $0.40
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