
Collaborative Evaluating the Flash Platform for Web-based Collaborative Data

Visualization

BY

ALESSANDRO FEBRETTI
B.S., Politecnico di Milano, 2005

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2008

Chicago, Illinois

ACKNOWLEDGMENTS

I would like to thank my two advisors, prof. Andy Johnson and prof. Franca Garzotto,

for the invaluable and unwavering support they offered me throughout my thesis work. Prof.

Johnson in particular was the one who gave me inspiration for the idea at the center of this

work and I am deeply grateful for this.

My acknowledgments go also to the other two members of my thesis committee, Marco

Santambrogio and prof. Jason Leigh. Marco co-advised me for my Bachelor Degree thesis, as

well as for a couple other projects. Working with him has always been a great and enjoyable

experience, and I was honored to have him on my committee even on this occasion. As for

prof. Jason Leigh, his teaching had a great influence on my academic and professional life.

Without him, a lot of the choices I made in the near past would have been different, and likely

wrong. Thanks.

AF

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Data Visualization . 1
1.2 Introduction to visualization techniques 2

1.2.1 Showing high dimensional data 2
1.2.2 Interactivity . 3
1.2.3 Collaboration . 4

1.3 Limitations of existing visualization systems 4
1.3.1 Scientific visualization and the Web 6

1.4 Purpose of this work . 8
1.4.1 Thesis Outline . 9

2 STATE OF THE ART . 11
2.1 Data Visualization Theory . 11

2.1.1 The Dataflow model . 12
2.1.2 Interactive visualization . 13
2.1.3 Distributed visualization . 15
2.1.4 Collaborative distributed visualization models 16

2.2 An overview of Visualization Systems 18
2.2.1 Classifying Visualization Systems 18
2.2.2 Summary of presented systems 20
2.2.3 VTK . 20
2.2.4 IRIS Explorer . 22
2.2.5 Mathematica . 23
2.2.6 CSpray . 25
2.2.7 COVISA . 26
2.2.8 Web-IRIS . 27
2.2.9 Web-based collaborative visualization tool. 28
2.2.10 Jmol . 30

2.3 Summary . 30

3 TECHNOLOGIES FOR WEB-BASED VISUALIZATION 33
3.1 General requirements for a data visualization web-application 33
3.2 Web-based technologies for visualization 36

3.2.1 Java . 36
3.2.2 VRML . 37
3.2.3 Shockwave . 38
3.2.4 Proprietary technologies . 39

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.2.5 Flash . 39
3.2.6 SilverLight . 42

3.3 Choosing a Technology . 42
3.4 Visualizing 3D data over flash . 43
3.5 Summary . 45

4 THE PROPOSED FRAMEWORK . 46
4.1 Visualization Pipeline . 46

4.1.1 Data Cubes . 47
4.1.2 The Canvas . 48
4.1.3 The View Definition . 49

4.2 Collaborative visualization . 50
4.2.1 The Workspace Service . 50
4.2.2 Update policies . 50
4.2.3 Cooperative configurations . 51
4.2.4 Overall application structure . 52

4.3 Summary . 52

5 FRAMEWORK IMPLEMENTATION . 55
5.1 Client structure . 55

5.1.1 The Canvas Class . 55
5.1.2 The Visualizer Class . 58
5.1.3 The DataCube Class . 59
5.1.4 The DataService Class . 61
5.1.5 The Workspace Class . 62

5.2 Server structure . 63
5.3 Client-Server communication . 63
5.4 Summary . 66

6 HYDROVIZ, A TEST-CASE APPLICATION 67
6.1 Purpose of the application . 67

6.1.1 Available data . 68
6.2 Application layout . 70

6.2.1 The toolbar . 72
6.2.2 The map panel . 73
6.2.3 The layers panel . 73
6.2.4 The workspace panel . 74
6.2.5 The chat panel . 74

6.3 Visualizers . 75
6.3.1 Bathymetry Visualizer . 75
6.3.2 Layer Visualizer . 76
6.3.3 Streamline Visualizer . 77

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.3.4 Annotation Visualizer . 78
6.4 Application usage scenarios . 79

6.4.1 Basic 3d model exploration . 80
6.4.2 Basic data visualization . 82
6.4.3 Visualizing time dependent data 83
6.4.4 Using depth slices . 83
6.4.5 Streamline visualization . 84
6.4.6 Collaborative visualization . 85

6.5 Summary . 87

7 CONCLUSIONS . 88
7.1 Evaluation . 88

7.1.1 Simple Access . 89
7.1.2 Ease of use . 89
7.1.3 Collaboration . 90
7.1.4 3D visualization . 91
7.1.5 Enjoyment . 91

7.2 Development effort . 92
7.3 Platform Choice . 93
7.4 Future Work . 94

7.4.1 Hydroviz . 94

APPENDICES . 97

BIBLIOGRAPHY . 116

FIGURES . 120

VITA . 128

vi

LIST OF FIGURES

FIGURE PAGE

1 The Haber and McNabb dataflow model diagram, showing the sequence
of steps involved in the visualization process. 12

2 The interactive dataflow model. 13

3 An example of operator flow. Operators are associated to the visualiza-
tion stage in which they apply, and are connected to operators that may
be executed afterwards. 14

4 Several possible configurations of a distributed visualization pipeline. . 15

5 Public and private view components in a collaborative distributed vi-
sualization system. 17

6 VTK visualization network diagram, code and resulting visualization. . 21

7 Screenshot of an IRIS explorer session, showing a visualization network
and the generated result inside the render window. 22

8 A sample Mathematica visualization, generated through a single line of
code. 24

9 CSpray visualization workspace. User controls viewpoint, can position,
orientation and particle spraying. 25

10 Making IRIS functionalities accessible from a web browser. 28

11 A web page integrating a JMOL interactive view. 29

12 Architecture of the Java Virtual Machine execution environment. 35

13 Penetration of most diffuse browser plugins 40

14 The flash display tree. The tree is traversed depth-first during rendering. 43

15 Diagram of the papervision rendering pipeline 44

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

16 The main elements of the framework visualization pipeline. 47

17 Two clients working on different views managed by the same workspace
service. 49

18 Examples of collaborative configurations supported by the framework. . 52

19 Overall structure of a visualization application. 53

20 UML digram of client-side QbViz classes. 56

21 Sequence diagram of a canvas update process. 57

22 Data layouts of standard and optimized data serialization formats. 60

23 Sequence diagram of a Data Cube reloading process. 61

24 Diagram showing how view updates are communicated between two
clients. 62

25 Remote method invocation through a flash remoting gateway. 63

26 Handling communication between client and the workspace through
message queues. 64

27 Distribution of measurement points in Corpus Christy Bay 69

28 A screenshot of the Hydvoriz client application running. 71

29 Hydroviz application layout. Arrows indicate how panels expand when
selected . 71

30 The Hydroviz toolbar. 72

31 (from the left) The map, layers and workspace panel. 73

32 Representation of a datapoint glyph, indicating how data items are
mapped to graphic features. 76

33 Streamline visualization. 79

34 Model manipulation using impostors. 80

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

35 The same bay area visualized using different model parameters. 81

36 Embedding QbViz visualizations in a HTML document. 95

37 The heightmap transformation pipeline. 99

38 Identification of the valid sampling area. 99

39 Hosting a web application on IIS. 115

40 Depth slices . 121

41 Streamlines . 121

42 Mixed streamline and datapoint layer visualization 122

43 Mixed streamline and datapoint layer visualization 122

44 a screenshot of the Hydroviz application showing the bay model and
two active data layers . 123

45 screenshot visualizing a data layer, streamlines and a geo-referenced
annotation . 124

46 Behavior of streamlines starting from the same point at different depths 125

47 Streamlines starting from significative points show the divergence of
different current flows . 126

48 Annotated depth slices . 127

ix

LIST OF TABLES

TABLE PAGE

I CATEGORIZATION OF PRESENTED SYSTEMS. 20

II OVERVIEW OF SOURCE DATA STRUCTURE. 68

III PREPROCESSED DATA STRUCTURE. 70

IV QBVIZ AND HYDROVIZ DEVELOPMENT STATISTICS. 92

x

SUMMARY

This thesis will present and discuss the use of Adobe Flash for the implementation of

collaborative visualization applications over the web. The work will be driven by the analysis

of typical requirements for this kind of applications, depending on their usage context: in

particular, the work will address requirements of visualization applications targeted at public

users, rather than scientists or other professionals with specific knowledge about visualization

systems. Public users dispose of little or no training on the application, need simplified access

to data which is usually of limited complexity, and may prefer an application that, while being

functional, also offers a pleasant interactive experience. The Flash technology may bring several

advantages to the developement of such a system, compared to other available alternatives.

The work will first define a novel and simple conceptual visualization framework: the

framework will be based on the standard dataflow visualization model, expanding it to add

support for interaction and collaborative work. The framework design will be kept as sim-

ple as possible to support easy and fast developement of web applications based on it. A

prototype implementation of the framework will be built using the Flash technology, and a

proof-of-concept visualization application will be developed on top of the framework, to test

its capabilities. The final evaluation of the technological choice and of the developed system

will consider both the success of the application in respecting the specified requirements, and

the developement effort needed to implement the overall system.

xi

CHAPTER 1

INTRODUCTION

This chapter will give a brief introduction to information visualization. Focus will be given

in particular to collaborative visualization, and to web-based visualization systems.

The flash technology will be presented as a possible foundation for web-based collabora-

tive visualization applications. The chapter will close with an outline of the rest of this thesis.

1.1 Data Visualization

In (17) the author defines visualization in the following way:

"Visualization is the process of exploring, transforming, and viewing data as images (or

other sensory forms) to gain understanding and insight into the data."

Data visualization techniques are a fundamental tool for analysis and understanding of com-

plex data. Data visualization is an important area of data analysis, where the data collected

is summarized and presented in visual form to aid in decision-making and in grasping the

minute details and relationships of data sets. The visual elaboration of information is a more

natural way to explore data and discover its features. Also, data acquired by satellites, gen-

erated by supercomputer simulations or logged for documenting the transactions of the stock

market can lead to datasets in the Terabyte range: therefore, one has to consider that datasets

1

2

generated by the analysis of real world phenomena or by their simulation are becoming so

big that it is infeasible to analyze the raw numerical data directly. Visualization techniques

have been applied in a variety of sectors: Data visualization is nowadays commonly applied

in physics, medicine, metereology and economics, to cite a few (3; 13; 7; 8).

1.2 Introduction to visualization techniques

Information visualization is usually strictly associated to computer graphics. In its earlier

development, computer graphics has been often described as "a solution looking for a prob-

lem": It sure has found a suitable problem in the area of data visualization. This may lead to the

wrong assumption that data visualization has been developed after the advent of computer

graphics. Actually, information visualization has a much longer history. Past visualization

approaches were mainly based on human analysis of data, rather than automated elaboration.

Common examples are the representation of mathematical functions for qualitative analysis,

or the creation of graphic depictions of data coming from the observation of natural or historic

phenomena.

The complexity of data that can be managed by these human-based methods is of course

very limited. Today visualization is almost always a result of computer elaboration: this has

clear practical advantages, and in some cases, due to source data complexity, represents the

only feasible solution.

1.2.1 Showing high dimensional data

In (17) another important characteristic of data subject to visualization is underlined:

3

"The dimensionality of data is three dimensions or greater. Many well known methods are

available for data of two dimensions or less; visualization serves best when applied to data

of higher dimensions."

Due to the frequent high-dimensionality of data, it is natural to consider visualizing it using

more that two dimensions: tridimensional data visualization usually makes data exploration

more intuitive, and allows to identify features of data that would otherwise go unnoticed.

Tridimensional visualization can be exploited mainly in two ways:

• visualizing a 3D representation of a real 3D feature: the three dimensions of the visual rep-

resentation directly map to the real world 3d dimensions of the feature or phenomenon

being analyzed;

• using 3D to represent heterogeneous dimensions: one or more of the visualization dimension

are used to represent a transformed spatial dimension, or even a non-spatial one, like time.

Animating the visualized data (that is, adding a time domain to the visualization) is another

way to increase the dimensionality of the representation.

1.2.2 Interactivity

Another important feature of computer-based visualization is interactivity: the user is not

just a spectator in the process of visualization, but takes an active role inside it, influencing

how data is created, transformed and viewed. Interactivity also allows the user to dynamically

focus on interesting features that may emerge from the visualization.

4

1.2.3 Collaboration

Collaboration represents a fundamental enhancement of visualization techniques: many

scientific discoveries are typically made by interdisciplinary teams, and not by isolated sci-

entists. Frequently, these teams need visualization systems that allow the different members,

who are often located at geographically different sites, to jointly investigate the results of a

simulation or of an experiment, and to share their knowledge and their experience (4). While

all of the participating users have to share a common perception of the data, their different

fields of expertise may make it necessary to customize their view of different properties of the

visualization and/or customize their interfaces.

1.3 Limitations of existing visualization systems

Even though advantages of visualization systems are clear, there are also issues that may

limit their power. Some of the problems that will be underlined in this section were less evi-

dent in the past for several reasons:

• visualized datasets were smaller and less complex than the ones available today;

• people using visualization systems were also the developers of the system itself. As such,

they had specific and relevant expertise on the system they were using; this situation is

less frequent today, and users may have no computer science background or program

development skills.

In the optimal case, visualization systems should require no other knowledge out of the do-

main of the information being visualized. Also, they should be flexible enough to let the user

5

construct custom visualizations, depending on his needs. This often represents a difficult task

to achieve: a tradeoff between ease of use and expressive power of a visualization system is

a pretty common occurrence. A lot of general purpose systems rely on some computer sci-

ence skills (or even programming ability) on the user’s side. Domain-specific visualization

technologies are in general easier to use, but extending the capabilities of these applications

beyond their initial domain may require a major development effort.

The presence of collaboration poses another challenge to visualization system develop-

ment. Cooperative visualization is often desirable, but developing and implementing an ef-

fective collaboration metaphor can be difficult. Some of the most important features required

in a collaboration system are (12; 4):

• Multiple independent participants: each participant should run a separate instance of a

visualization system, with freedom to collaborate as much as they please within a larger

collaborative environment. The design should allow an arbitrary number of participants

who should be able to join and leave as the session progresses.

• Dynamic collaboration: the nature of the collaboration should evolve, not be predeter-

mined. Decisions to join a collaboration, and in what way to collaborate, should be

allowed as the visualization analysis proceeds. Indeed, the nature of collaboration can

be driven by the visualization.

• Shared control: any participant should be able to control any parameter of the visualiza-

tion of any collaborator. This allows scenarios where different participants are allocated

6

control of different parameters in a pipeline, according to their individual skills and ex-

pertise.

• Workspace Awareness: users should perceive and understand the activity of the other per-

sons within the shared workspace. Workspace awareness is much harder to maintain in

a collaborative environment with remote participants than in a face-to-face situation, and

it is often difficult to determine who else is in the workspace, what the other participants

are working on, and what they are doing. Awareness models help in understanding

what are the features of communication that enhance workspace awareness (2).

From the technical point of view, collaboration can be limited by the size of involved

datasets and by the speed of the network that connects users. maintaining synchronized views

of the data among a set of cooperative users requires a good planning and optimization of data

exchanges, or relies on strong assumptions over the collaboration model (26; 1).

1.3.1 Scientific visualization and the Web

The diffusion of local and wide area networks offers new perspectives for collaborative

work. Internet connectivity is constantly increasing: more and more people use the web as

a source of heterogeneous information, or as a way to get in contact with other people. Web

applications, globally accessible by users through a simple browser, represent a powerful and

immediate way to retrieve, add and manipulate information, as well as to interact with re-

mote users. It has been underlined how visualization systems and techniques can have an

extremely high power in communicating and understanding information. The internet is to-

7

day a huge source of scenarios where the application of these techniques can really add value

to the presentation of data to end users.

As underlined in (28), creating a modern web-based visualization system poses some ad-

ditional challenges. Classic visualization systems, targeted to specific user communities or

to expert users, had functionality as their main objective. Initial user training is an accepted

and frequent practice in this scenario. Through the internet, it is possible to target visualiza-

tion systems to larger communities of users that have no detailed domain knowledge or lack

application-specific training. In this case it would be desirable to keep the system immedi-

ately accessible even to people who do not have deep knowledge of it: application usability is

of extreme relevance in this case. Also, over the web people are becoming more and more

expecting in terms of overall experience created by applications or web sites they access and

use. In this regard, offering the causal user an application that is functional in terms of services

it offers, but visually poor or with unappealing interactive features, may leave users unsatis-

fied. The creation of rich and graphically pleasing experiences related to visualization represents an

additional task for people who design and create visualization systems for the web. Current

visualization technologies offer little or no support to the design of such systems, since they

are targeted more at functional efficiency. It is therefore important to choose a technology that

allows the development of web-based visualization applications with richer interfaces, while

keeping the development effort as low as possible.

8

1.4 Purpose of this work

This work will describe and evaluate the implementation of a visualization system based

on Adobe Flash, (33), a very common technology used for the development of rich web ap-

plications, animated graphics and other interactive and non interactive content for the web.

Flash has been in use since 1997, and its evolution has led it to a state where it may be con-

sidered a possible foundation technology for collaborative data visualization. Compared with

other web technologies, Flash offers several significant advantages in terms of ease of devel-

opement, interface customization and diffusion. On the other side, a major drawback of this

platform is represented by the lack of hardware 3D rendering support, which severely limits

the complexity of information that can be visualized at interactive (or nearly interactive) frame

rates. This thesis will attempt to understand if the limits of Flash are overcome by the advan-

tages it offers to the developement a web-based visualization application. This evaluation will

be based on the following executive methodology:

1. identify the most important requirements for a web-based visualization system. These

requirements will be as general as possible, i.e. they won’t be related to the domain of

any specific visualization application; also, the requirements will consider the needs and

preferences of both end users and developers of the system.

2. define a conceptual framework for web-based collaborative visualization: this frame-

work should focus on the identified requirements, while remaining simple enough to

favor an easy and fast developement process;

3. implement a framework prototype, based on the flash technology;

9

4. build a proof-of-concept visualization application on top of the framework;

5. evaluate the framework and the application with respect to the identified requirements.

1.4.1 Thesis Outline

The thesis is structured as follows:

• Chapter 2 will give a theoretical presentation of the visualization process, and will re-

view some of the visualization systems available today.

• Chapter 3 will focus on requirements for a modern web-based visualization system. Sev-

eral platforms will be analysed as possible foundations of such a system. The choice of

flash among other platforms will be justified in more detail.

• Chapter 4 will describe a simple conceptual framework for collaborative data visualiza-

tion over the web.

• Chapter 5 will describe the architecture of a flash implementation of the framework pre-

sented in previous chapter, called QbViz.

• Chapter 6 will introduce Hydroviz, a proof-of-concept application developed on top of

the QbViz framework. Hydroviz purpose is the visualization of salinity and currents

information for the Corpus Christi Bay area, Texas.

• In Chapter 7 an evaluation of the overall work will be reported. The implemented sys-

tem will be judged against the requirements discussed in Chapter 3. The evaluation

will underline the advantages given by the choice of Flash to the developed applica-

tion, and to the developement process itself. The practical limits of the technology will

10

be underlined as well, describing areas of the application that were most penalized by

those limits. Some final considerations and possible future developements will then be

presented.

CHAPTER 2

STATE OF THE ART

This chapter will provide a theoretical presentation of data visualization models. The

standard dataflow model will be described, along with extensions that add interactivity, dis-

tributed computing and collaboration to the model.

A survey of several visualization technologies will then be presented. Visualization systems

will be classified according to their most distinctive characteristics, like applicative domain or

collaboration support.

2.1 Data Visualization Theory

In this section some details about theoretical visualization models will be discussed. The-

oretical visualization models define a conceptual structure of entities and operations that are

involved in the process that transforms source data into a visual representation of its content.

These models can define just simple operation sequences, or they can be structured to con-

sider more complex factors like user interaction or collaboration. Several models have been

proposed to describe a generic data visualization process (22; 23; 25): One of the most common

reference models is the one proposed in (21) by Haber and McNabb.

11

12

1. The Haber and McNabb dataflow model diagram, showing the sequence of steps involved
in the visualization process.

2.1.1 The Dataflow model

The Haber - McNabb model (Figure 1) is based on a three phase pipeline. Data entering

the pipeline is filtered, transformed and output as a visual representation of the originating

information. The steps of the Haber and McNabb dataflow are:

1. Data Filtering: Original dataset is filtered to isolate the region of interest. In this phase

numerical data can also be transformed, elaborated or enriched to make it more signi-

ficative for subsequent elaboration.

2. Mapping: Data coming from the filter phase is transformed into an enriched geometrical

representation of its content. For instance, a scalar field dataset can be transformed into

a 3D grid, in which node heights represent the magnitude of the scalar values.

3. Rendering: The geometrical representation of data is transformed into a 2D image. The

output of this phase depends on both the input from the mapping phase and the charac-

teristics of the viewpoint used to observe the data. The rendering phase, usually applies

standard image synthesis techniques like those described in (50).

13

2. The interactive dataflow model.

2.1.2 Interactive visualization

The three phase model is simple and well suited to describe the kernel of the visualization

process. Yet, it does not take into account the interaction of the user with the visualization.

Also, collaboration of multiple users over the same visualization pipeline is not considered.

A basic extension of the model that keeps interaction into account is presented in figure 2:

the user analyzes the image generated by the visualization pipeline, and then modifies some

parameters of the pipeline itself to generate a new significative output. The repetition of this

task (image generation, user feedback on the pipeline, new visual output) is the basis of inter-

activity in visualization systems.

The presented interaction model, based on simple feedback, is very general but does not de-

scribe the fine details of how interaction can work. More refined models can be defined: (25)

for instance, defines an operator framework that classifies all possible interactive operations sup-

ported by a visualization system. These operations can be applied during various stages of the

14

3. An example of operator flow. Operators are associated to the visualization stage in which
they apply, and are connected to operators that may be executed afterwards.

visualization pipeline: the execution of an operation in a specific stage in turn allows the exe-

cution of subsequent operations in the same stage or in following ones. This model is therefore

able to represent also the flow of operations that lead from data to visualization. Figure 3 (25)

shows an example of operation flow.

15

4. Several possible configurations of a distributed visualization pipeline.

2.1.3 Distributed visualization

The increasing trend in size of datasets subject to visualization has already been discussed

in chapter 1. It is clear that elaboration and visualization operations for such datasets are

resource-consuming tasks. In many situations the data is too big to be processed and displayed

by a single computer. That is why, to perform fast interactive rendering of large datasets,

distributed and parallel processing are a common practices (26). The visualization pipeline

presented in section 2.1.1 can be easily split into separate execution units that can be organized

in different configurations (figure 4).

16

Another situation in which the visualization pipeline gets distributed among different

units arises in the case of online-visualization. In the case of online visualization, the user end-

point of the pipeline may be in a remote location with respect to the data store, the simulation

services or the data analysis facilities. In the extreme situation, all phases of the visualization

pipeline may be implemented by remote online services that can be linked dynamically.

Distributed configurations may lead to advantages in the overall system flexibility, but

also carry important concerns when one takes interactivity into account. The presence of in-

teraction requires the constant exchange of data between the user and the pipeline services.

Limited bandwidth and high latencies in the network links between these entities could lead

to increased system response time, which in turn may adversely affect interactivity.

2.1.4 Collaborative distributed visualization models

The important role of collaborative features in visualization systems has already been dis-

cussed in section 1.2.3. In its most general definition, a collaborative visualization system

allows multiple users to view and manipulate some form of common representation of the

data. Each user view of the data can be divided into two separate components (figure 5):

• the private component is local to each user. Modifications to the private part of a visu-

alization do not get broadcast to other users. Each user has his own private component

configuration;

• the public component is the part of the view that gets shared among all the users. Data

and visualization entities inside the public part of the view are the ones that are actually

involved in collaborative interaction.

17

5. Public and private view components in a collaborative distributed visualization system.

As an example of private and public view components, a 3d methereological visualization

system can place in the shared part all the content of the visualization (i.e. the region of interest,

the cloud layers, streamlines etc.), and leave the viewpoint (that is, the position from which data

is observed) private to each user. In this way, users cooperate in defining the content of the

visualization, but each one can look at the data from his own position.

Collaborative visualization systems are, in a sense, an extension of distributed visualiza-

tion systems. All the considerations and limitations that were made for distributed systems in

section 2.1.3 still apply in this scenario.

Collaborative systems should be subject to additional considerations: in this case there are

multiple user endpoints, and so there are multiple potential interaction sources within the

18

system. This characteristic has the immediate effect of increasing the need of remote data

exchanges between the entities of the system (whether they are user endpoints or data pro-

cessing services). As in the case of distributed single-user visualization, collaborative visual-

ization models have to take into account the limits that those data exchanges impose on the

consistency and synchronization of all the user visualizations.

2.2 An overview of Visualization Systems

This section will present a review of some of the existing visualization tools and technolo-

gies available today. Providing an exhaustive classification of all existing visualization systems

is a practically unfeasible task. Still, it is significant to identify some classification criteria that

are particularly useful to differentiate systems. These criteria should also help in choosing sev-

eral systems that can then be presented in order to give a good overview of the visualization

system universe.

2.2.1 Classifying Visualization Systems

Several different classification methodologies can be applied to visualization systems. In

(20) the author divides visualization systems in three categories (special purpose applications,

modular environments, and libraries with toolkits), based mainly on the level of abstraction

those technologies have with respect to a specific data visualization domain. Those consider-

ations will be applied also in this work, but classification will refine it and take into account a

major number of factors.

The categorizations used to distinguish among visualization systems will be the following

ones.

19

• Toolkit vs. application: a toolkit is a lower level technology than an application. Appli-

cations are ready to use out-of-the-box, while toolkits come in the form of programming

interfaces that can be used to create applications. Using a toolkit requires a lot more ex-

pertise than using an application, even if toolkits allow the user to create exactly the kind

of data manipulation and visualization system they need.

• For systems classified as applications, there is a further distinction between modular

environments and domain-specific applications: domain specific applications are ded-

icated to a particular type of visualization problem. This kind of application has usually

been built in order to satisfy the classical needs of a given user community. Modular

environments provide a number of simple data processing, manipulation and visual-

ization modules, that can be assembled by the user to create the required visualization

system. When needed, the capabilities of the system can be expanded by programming

new modules. Modular visualization environments are simpler to use that a toolkit, even

if the creation of visualization networks requires some expertise, and have a similar ex-

pressive power.

• The presence of Collaborative visualization support.

• A standalone or web-based interface: web-based applications are accessible using a

standard browser and some additional technology, like java, flash, VRML and so on (as

described in chapter 3). The advantage of web-based applications versus stand alone

ones is that their diffusion and access is much simpler. Generally, the users won’t have

to download and install anything on their machine: they will just connect to a specific

20

System Name Class Domain specific Collaborative Web based
VTK Toolkit - - -

IRIS Explorer Application - - -
Mathlab Mixed - - -
CSpray Application ? YES -

COVISA Application - YES -
WBCIVT Application ? YES YES

JMOL Application YES - YES
Web-IRIS Application - - YES

I

CATEGORIZATION OF PRESENTED SYSTEMS.

web address. This is especially important when developing visualization applications

targeted to occasional users, that may feel undesirable to install a new application on

their machine, rather than simply navigating a web site.

2.2.2 Summary of presented systems

All of the characteristics discussed above are independent from the others: each one there-

fore represents a distinct categorization dimension for the presented systems. Table I shows a

summary of all the visualization systems that will be described in following sections. In the

table, features marked with "?" are difficult to classify, or may be only partially present. The

corresponding system’s section will give detailed information about these features.

2.2.3 VTK

The Visualization ToolKit (VTK), (19)(18), is an open source software system for 3D com-

puter graphics, image processing, and visualization. VTK consists of a C++ class library, and

several interpreted interface layers including Tcl/Tk, Java, and Python. The model supported

21

6. VTK visualization network diagram, code and resulting visualization.

by this library is the visualization network (see Figure 6, (20)). The pipeline consists of objects

to represent data (data objects) and objects to operate on data (process objects). Programmat-

ically linking instances of these objects together leads to the desired visualization. VTK can

be used to build powerful standalone visualization applications, but it cannot directly be used

to develop web-based applications. It would be possible to develop a browser plugin that

exposes VTK functionality, but this would require significant developement effort.

VTK also offers no native support for collaborative features: even though network func-

tionality can be implemented inside a VTK application using third party solutions, the inte-

gration between VTK and the communication layer is entirely up to the user.

22

7. Screenshot of an IRIS explorer session, showing a visualization network and the generated
result inside the render window.

2.2.4 IRIS Explorer

IRIS Explorer, (31), can be seen as the classic example of a Modular Visualization Envi-

ronment (MVE). In a modular visualization environment, users interactively create their vi-

sualization in the form of a network of modules. Editing of the network is performed via a

point-and-click interface, where modules are selected from a library, dragged onto the map

editor and connected together. The behavior of each module is usually controlled by some set

of parameters, and the user can interact with these while the application is running via a stan-

dard set of widgets. Other systems similar to IRIS are AVS/Express (29) and Data Explorer

23

(30). IRIS can support collaborative work through the use of special modules designed for this

purpose: the work described in section 2.2.7 is an example of this approach. Since collabora-

tion is not integrated inside IRIS at a lower level, this kind of solution may result less intuitive

than other ones, expecially during collaborative session setup. IRIS is a standalone application

and cannot be used to build visualizations over the web. Some work has been carried on to

interface IRIS to a web-based application interface (section 2.2.8, but actual implementations

severely limit the amount of accessible IRIS functionalities.

2.2.5 Mathematica

Mathematica, (32), is a computation and visualization environment, and used mainly in

scientific and mathematical fields. Tools like Mathematica, or Matlab (49) are half-way be-

tween MVEs and visualization toolkits: they usually require some programming effort using

their own special-purpose language, but they also simplify immediate visualization and ma-

nipulation of graphic results. As figure 8 shows, simple language constructs allow the creation

of an interactive visual representation of the generated result. Mathematica also offers a web-

accessible version of its services, even if it is limited to server-side generation of visualizations

that are then sent to the browser as images: real time data manipulation is not possible. Also,

this kind of applications does not offer any kind of collaboration support, and the integation of

collaborative features inside them may result particularly difficult: the reason is that these ap-

plication, despite being able to perform pretty complex visualization tasks, do not implement

any specific visualization metaphor: adding collaboration to such a generic environment is far

24

8. A sample Mathematica visualization, generated through a single line of code.

25

9. CSpray visualization workspace. User controls viewpoint, can position, orientation and
particle spraying.

from being easy, and the implemented solution may result less intuitive that the ones designed

for systems where the visualization methaphor is clear and structured.

2.2.6 CSpray

CSpray (6) has been developed at University of California, Santa Cruz. CSpray stands

for Collaborative Spray rendering and is an extension of Spray, (15)(16), a visualization en-

vironment based on the spray rendering metaphor: in the Spray environment, the data are

represented using the metaphor of a spray acting on a portion of space. It sprays sparts (smart

particles) that react with the data they encounter according to a behavior described by a pro-

gram written in a simple language that the sparts interpret. The flexibility is thus provided by

the possibility of implementing various functions in the sparts (figure 9). What is particularly

26

interesting in this attempt is the fact that the techniques of surface, volume and how visualiza-

tion are generalized and that spray rendering allows selective progressive refinement, i.e. the

ability for a user to concentrate on the phenomena occurring in a precise region of interest.

Collaboration in the Spray environment is quite intuitive: every user has his own point of

view to the data, and can manipulate a spray can: additionally, users can see data from the

viewpoints of other participants, or take control of their spray cans when allowed to do so.

Workspace awareness is maintained through the use of Eyecons (eye icons), that represent the

position and looking direction of other users inside the workspace.

One of the main limitations of CSparts is represented by the spray rendering concept it-

self. Some types of visualization are difficult to manage through this kind of metaphor: the

visualized data should be significantly representable by "clouds" of simple graphic primitives

represented by the smart particles. Several visualization techniques, like texture-based visu-

alization, are not practical in a spray rendering environment. Another limitation of the actual

CSpray implementation is the lack of support for sparse source datasets: the data managed

by the spray environment must be sampled on a regular grid. In many scenarios (like the one

presented in Chapter 6) this would require a resampling of the source dataset.

As for now, no web-based implementation of spray rendering has been developed.

2.2.7 COVISA

The Cooperative working in Visualization and Scientific Analysis (COVISA) project, (4) (5)

(14) is developed at the University of Leeds. Its aim is to expand the capability of single user

modular visualization environments, adding collaborative support. The current implementa-

27

tion targets the IRIS explorer platform, and is based on a set of custom modules: "these new

modules, when wired up in the same manner as the standard modules, can pass either data

or parameters out of or into a pipeline. These extra modules then form a collaborative toolkit

for the visualizer to build shared pipelines in any of the forms representable by the model.

This approach is feasible in all of the MVEs though the implementation details will be differ-

ent.". The COVISA implementation for the IRIS framework is considered complete: COVISA

modules are now part of the standard module library distributed with IRIS explorer.

Altough COVISA works in integrating collaboration inside a modular visualization envi-

ronment, it requires a significant amount of work from the users, expecially during collab-

orative session setup: the users have to build up two symmetric visualization networks on

their respective environments, and add the special-purpose collaboration modules at the right

places. COVISA offers no support for these operations. Also, COVISA does not manage col-

laborative changes in the network topology.

2.2.8 Web-IRIS

The web-IRIS prototype system aims at allowing access to the visualization services offered

by IRIS explorer through a normal browser. The system, whose structure is illustrated in

figure 10 is similar, in functionality and limitations, to the approach used by the web-accessible

version of Mathematica presented at the end of section 2.2.5. Through the web interface users

can just manipulate some parameters of the visualization network, and receive an updated

version of the corresponding visualization. Changes in the actual network structure are not

supported. An interesting variation of this system, compared to the one used for Mathematica,

28

10. Making IRIS functionalities accessible from a web browser.

is that it generates visualization results as VRML files, instead of still images: this allows

end users to "explore" the 3D visualization inside their browsers. Details about the VRML

technology are discussed in section 3.2.2. The developement of this prototype system does

seems to be no longer active.

2.2.9 Web-based collaborative visualization tool.

This experimental tool (24) has been developed from departments of Informatics and Elec-

trical engineering of Universidade Federal do Pará. It allows the collaborative visualization of

3D data inside a normal browser. Two main client side technologies are used: Java and VRML.

The java applet handles both user interaction and the generation of new VRML visualizations,

29

11. A web page integrating a JMOL interactive view.

depending both on local and remote manipulation. The application interface is split up into

two separate views, one local only and the other shared. The two views are independent one

from the other, meaning there is no way to easily share data among them, i.e. building up a

view which is partially private and partially shared and manipulated by all the users. There

is also limited information about the kind of data supported by this application, and about

how data is exchanged and accessed during collaborative sessions. Excluding a simple graph

visualization application, no significative test case has been presented for this tool yet.

30

2.2.10 Jmol

Jmol is a molecule viewer for use in chemistry and biochemistry. Jmol has been developed

in java (see section 3.2.1) and is available as both a standalone application and an applet that

can be integrated into web pages, as figure 11 shows. Jmol is able to display molecular struc-

tures in a variety of ways. For example, molecules can be displayed as "ball and stick" models,

"space filling models", etc. Jmol does not support any collaborative feature out of the box,

even though it has been shown how it is possible to integrate it inside the standalone appli-

cation version (1). Jmol is a good example of a "turnkey" application: it targets a specific and

limited applicative domain, but it offers extremely effective functionality for that domain. It

is really difficult for any generic visualization system to challenge this kind of special purpose

applications. The disadvantage of special purpose systems from a developer point of view, is

that they require significantly more work than any visualization application built on top of a

generic system: in some cases the benefit of fast developement times may overcome the possi-

ble potential of a special purpose application developed from scratch. Generic systems my be

the best choice when needing to build a working prototype of the application in limited times.

2.3 Summary

This chapter introduced a critical review of several available visualization systems: these

systems, even if representing a small fraction of visualization applications developed so far,

have been chosen to give a significative overall picture of the field. This choice was driven by

the classification presented in section 2.2.1, and it was made to cover up as many significant

feature configurations as possible.

31

From the presented reviews one significant thing emerged: some standalone systems are

trying to offer a web-based interface to their functionality. This is an additional evidence of

the fact that deploying visualization applications over the web is considered more and more

important. It has also be noted how the process of exposing functionality of existing appli-

cation was not completely effective: often web interfaces to standalone applications offered

a much limited subset of the original system’s functionalities. Due to implementation con-

straints, these interfaces can also be less intutive, or offer limited interaction when compared

to their standalone counterparts.

On the other side, it was difficult to find completely web-based applications which offered

the same visualization and collaboration features available in standalone versions. This is

partly caused by to the fact that developing a web-based visualization application is usually

more difficult, due to the additional constraints associated with the developement of such

systems (as explained in section 1.3.1).

The choice of the correct technology for developing visualization applications over the

web is therefore of extreme importance. This choice should be driven by the requirements

that the system needs to satisfy, which in turn depend on the applicative scenario. In chapter

1 it has been underlined how this work specifically addresses the needs of common users,

who potentially don’t have any prior knowledge of the application, need simplified access to

data which is usually of limited complexity, and may prefer an application that also offers a

pleasant interactive experience.

32

Next chapter will describe the identified applicative requirements in more detail, and it

will derive a set of technological constraints to guide the choice of a foundation technology for

web-based visualization system developement.

CHAPTER 3

TECHNOLOGIES FOR WEB-BASED VISUALIZATION

This chapter presents a critical review of several technologies that can be used to develop

a collaborative visualization application over the web. The technologies will be evaluated

through a set of requirements that emerge from the desired features of the application. These

requirements will justify the choice of Flash as a possible foundation technology for web-based

visualization systems.

3.1 General requirements for a data visualization web-application

An partial overview of requirements for a web-based visualization application targeted at

common users have already been presented in section 1.3.1. Here the most important of these

requirements are listed and explained more formally:

• Simple access: the application should avoid the need for the user to install custom or

third party browser extensions. Widespread and trusted technologies should be used

whenever possible.

• Ease of use: the application should offer an easy to use interface, one that an untrained

user can learn by himself with little or no assistance.

• Collaboration: the application should offer some form of collaborative visualization

support, either synchronous or asynchronous.

33

34

• 3D visualization: Rendering and manipulation of mildly complex 3D visualizations

should be supported.

• Enjoyment: the application should be functional, but also offer a rich interaction experi-

ence to users.

These requirements pose some constraints in the choice of technologies that one can choose

as a foundation for a web-based visualization system:

• Diffusion: the chosen technology should have a huge installed base. For users not al-

ready reached by the technology, the download and installation of the required browser

plugins should be a fast and easy operation. In the case of technologies which get regu-

larly updated, plugin updates should guarantee backwards compatibility, to avoid ver-

sioning issues between the technology available on the end user machine, and the one

that was used to develop the application. Also, the update system should be simple and

automated, to simplify the access to the right version of the technology for users that

require it.

• Easy development: implementing a visualization system using the chosen technology

should be as straightforward as possible. The used programming language should be

high-level enough to allow fast development times (in the order of some man-months).

• Support for interface design: the technology should offer some way to easily implement

a graphically rich user interface. The interface should also have an easily customizable

look and feel.

35

12. Architecture of the Java Virtual Machine execution environment.

• Advanced communication layer: several communication and data access interfaces should

be made available by the technology (i.e. web-service access, custom HTTP messaging,

socket support, remote procedure call, ...)

• 3D graphics support: The technology should offer some 3D rendering capability, either

directly or through additional APIs.

The next section will present several technologies that may be considered as development

platforms for a web-based visualization system.

36

3.2 Web-based technologies for visualization

3.2.1 Java

Java is a widespread high-level language, used for both standalone and online application

development. Java programs are compiled into a machine independent binary format and

then executed by a Java virtual machine (48) (figure 12). Executing code on a virtual machine

is much more secure, since code is run in an environment where strict security checks can be

applied. This is a fundamental requirement when it comes to executing code that has been

downloaded from remote and potentially unsecure sources. Java web applications come in

the form of applets that can be downloaded and run inside the client browser.

Exploiting java as a base technology for a web-based data visualization application is pos-

sible through the use of third party libraries that offer general purpose 3d rendering support.

One such library is JOGL, (41). JOGL exposes OpenGL (42) functionality inside a Java applet.

It is possible to develop a Java / JOGL data visualization applet that will be accessible through

a normal Java-enabled browser. Requiring the users to have a java virtual machine installation

to be able to run java applets is not a particularly limiting constraint, since the JVM installed

base is pretty large (see figure 13). The JOGL library is not part of the standard JVM installa-

tion, so most users will have to install it. The download and installation is automatic when one

starts a JOGL-enabled applet, even if some minimal interaction with the user is needed (the

user has to accept a certificate prior to installation). The Java / JOGL development technology

is a pretty powerful choice, but has some disadvantages too: JOGL is basically a wrapper that

makes OpenGL functionality accessible from a Java applet. In this sense, it does not offer any

37

higher level functionality than OpenGL itself. It has already been underlined how developing

a complete visualization system using such low level technologies, although possible, may

require a considerably longer development time and effort compared to other choices. Also,

Java applications can integrate users interface features through the SWIG (54) and AWT (55)

technologies but they do not easily support complex graphic animations and effects on visual

components, like other technologies can do (see sections 3.2.5 and 3.2.3).

3.2.2 VRML

The Virtual Reality Modeling Language (VRML) is a standard file format for representing

3-dimensional interactive vector graphics, designed particularly with the World Wide Web in

mind. After installing a VRML plugin, users can download and explore 3D environments

inside their browser. The environment is described through a simple description language

that defines the virtual world geometry.

VRML environments also support user interaction: URLs can be associated with graphi-

cal components so that a web browser might fetch a web-page or a new VRML file from the

Internet when the user clicks on the specific graphical component. Animations, sounds, light-

ing, and other aspects of the virtual world can interact with the user or may be triggered by

external events such as timers. It is also possible to add program code (e.g., written in Java or

JavaScript, (43), a simple script-like java dialect) to a VRML file.

An XML-based markup language with the same applicative purpose as VRML is X3D (47).

X3D is considered the natural evolution of VRML, and it features several extensions to the

latter technology, like humanoid animation and NURBS.

38

As already underlined, browsers need a VRML (or X3D) plugin installed, to be able to show

VRML content. The diffusion of VRML viewers is pretty low compared to other technologies

presented in this chapter. The need to install a custom plugin is alleviated by the fact that

viewers are usually pretty small (about 2MBs), allowing fast download and installation times.

A major drawback of VRML is that it is just a 3D world definition language: it cannot be

used to support client computation or to manage user interfaces directly, requiring instead the

integration with other technologies.

3.2.3 Shockwave

The shockwave technology (35) was initially developed to create interactive content for

presentations, simple games and multimedia CD-ROMS. Shockwave evolved over the years,

adding support for hardware - accelerated 3D and for online content delivery to browsers

equipped with a shockwave plugin. Shockwave applications can be developed inside a pro-

prietary authoring environment. Application logic can be written in lingo (46) or Javascript.

Developing complex, data-intensive and collaborative applications using shockwave can

be a pretty complex task, due to the lack of advanced data access and communication libraries.

The authoring environment is also pretty spartan and less reliable compared to other alterna-

tives.

Future support for this technology is not guaranteed, since much of the capabilities of

Shockwave can now be replicated using Flash (section 3.2.5), which is currently developed

and distributed by the same company.

39

3.2.4 Proprietary technologies

Proprietary technologies like VirTools (45) and Hypercosm (44) may allow for simpler de-

velopment of web-based data visualization applications, since they are oriented to that exact

purpose while other generic technologies are not. Development with this technologies usu-

ally requires the purchase of proprietary authoring tools. The quality of these tools should be

thoroughly analyzed to see if development requirements are respected. Also, the use of propri-

etary technologies carries a significant disadvantage: the installed base for custom proprietary

plugins is extremely low. Developing a web application supported by such a technology will

require the user to install a custom third party plugin in almost every case: while a casual

user may decide to download and install a well-known technology (like Java or shockwave)

he may be dubious on downloading an unknown (and potentially malicious) plugin on his

machine.

3.2.5 Flash

The Flash technology, (33), has been developed with the explicit target of delivering in-

teractive graphic content on flash-enabled browsers. Flash visual content (which is mainly

composed of vector graphics) is displayed on end user machines using the vector renderer

embedded in the flash plugin. Application logic, compiled into bytecode, is run on a simple

virtual machine. The code for a flash application is written in a simple scripting language,

called ActionScript (34). Actionscript underwent a notable evolution over different versions

of flash. In its current version, Actionscript can be used as a full-fledged object oriented lan-

40

13. Penetration of most diffuse browser plugins

guage (like java), but still retains some scripting-language features that allow faster application

prototyping and development.

Starting from version 9, Flash integrates the Flex framework, (36), that greatly enhances the

development of rich and interactive visual interfaces. Interface components and layout can be

defined using MXML, an XML-based user interface modeling language. MXML markup can

embed actionscript code or access code from external source files, to achieve a good separation

between application view and logic.

41

Even though flash applications can be created inside a proprietary authoring environment,

it is possible to develop a complete application using a standard text editor to write Action-

script and MXML code, and compile it to its executable form (a .swf file) using the free com-

piler offered by Adobe.

Developing data-driven applications in flash is straightforward. Access to data sources

and services can be achieved in a variety of ways: flash remoting, web service access, http

requests or raw socket connections are some of the available options.

As figure 13 shows, flash installed base is huge. In most cases, content developed in flash

will be seamlessly displayed and run on the client browser without requiring any user inter-

action.

3.2.5.1 Vector rendering

The main disadvantage of current Flash implementations is their lack of hardware - ac-

celerated 3D support. All of the graphic content of a flash application is rendered using a

software rasterizer. The software rasterizer is extremely optimized, and can event take advan-

tage of multi-core processing capabilities of the machine when available. Still, its performance

is easily overcome even by medium level 3d hardware renderers.

The choice of a software vector renderer was originally made to guarantee that delivered

content would look the same on the widest possible range of machines and platforms (even

those with no 3d acceleration available). Taking into account all the possible levels of support

of accelerated 3d graphics would have been far more complex than implementing a generic

42

software rasterizer. Also, in its original incarnation flash was not thought to deliver highly

complex graphics.

The situation is now beginning to change. Flash applications are becoming more demand-

ing in graphic capabilities: this already led to the introduction of hardware level support for

certain graphic operations like full-screen scaling.

3.2.6 SilverLight

A technology similar in purpose and mechanics to flash is SilverLight, (38),developed by

Microsoft. Silverlight can be programmed using the C# language, an object-oriented language

similar to Java. C# can be used also to develop the server side components of a web applica-

tion, simplifying communication among the client and server, and allowing to recycle parts

of the code. Actionscript does not allow so, since it is designed to be just a client-side devel-

opment language. This is a significant development advantage over flash, and may play an

important role when one has to choose between Flash and Silverlight as his target platform.

As for now though, SilverLight is a young and developing technology with respect to Flash.

SilverLight is still in its beta stage, and its installed base is extremely low. At present, these

considerations make flash a better choice over SilverLight if one were to choose among them,

even if SilverLight development, diffusion and acceptance might lead to a different consider-

ation in the future.

3.3 Choosing a Technology

Considering requirements and constraints recalled in section 3.1, the choice of flash to de-

velop a visualization application over the web appears reasonable. It has been underlined

43

14. The flash display tree. The tree is traversed depth-first during rendering.

how the main limitation of the flash technology right now is its lack of hardware-accelerated

3d support. This is indeed a major disadvantage in the choice of flash: yet, application inter-

activity and real-time responsiveness can be preserved through the use simplified rendering

techniques when manipulating 3D content.

3.4 Visualizing 3D data over flash

When presenting the technology, it has been underlined how Flash implements a vector

renderer that basically supports the drawing of 2d shapes (lines, curves, circles, rectangles

and so on) and raster images. Multiple shapes and images can be grouped together into more

complex visual objects, called sprites. Sprites can also contain other sprites: this ends up form-

44

15. Diagram of the papervision rendering pipeline

ing a visualization hierarchy, with the stage (that is, the total available visual space) as its root

(figure 14. The hierarchy allows to consistently apply 2d transformations to complex objects.

The hierarchy also determines the order in which objects are drawn (during the draw phase,

the hierarchy is traversed depth-first).

Flash has no concept of 3D space. 3D primitives and transformations have to be mapped

to 2D prior to drawing. Some actionscript libraries have been written to perform this task.

Currently, the most advanced implementation of a 3D manager for flash is offered by the

Papervision library (52). Figure 15 illustrates the main function of papervision: converting

3D primitives to a hierarchy of 2D sprites that can be managed by the flash rendered and

represents the original 3D scene. This conversion involves three main operations:

• Converting 3D coordinates of objects into 2D screen coordinates. This is done using

standard world, view and projection matrix transformations.

• Sorting object depending on their distance from the user viewpoint, so that near objects

are drawn after far-away objects, occluding them properly (painter’s algorithm, (56)).

This is far from being an optimal solution. Modern hardware renderers use more efficient

45

techniques that avoid the need to sort objects, like Z-Buffering, (57). Unfortunately this

cannot be done in flash, and sorting is the only way to achieve correct object occlusion.

• Drawing sorted objects using 2D primitives. This operation is possible at this point, since

object coordinates have been converted to 2D screen space in the first step.

Papervision also supports other features, like lighting calculation and postprocessing effects.

A detailed description of this techniques goes beyond the purpose of this section.

3.5 Summary

This chapter discussed several criteria used to understand whether a web developement

technology can be considered suitable for implementing a web-based collaborative visualiza-

tion application. The choice of flash among other presented technologies was partially justified

by these criteria, even though limitations associated with this choice have been underlined as

well. The major drawback of Flash is software rasterization, which represents a severe con-

straint on the complexity of visualized data. The idea supported in this work is that, for

applications requiring 3d visualizations with limited complexity, the penalty represented by

software rendering may be overcome by all the other advantages offered by the Flash technol-

ogy. Next chapters will describe the design and implementation of a visualization framework

based on Flash. The framework will be used to build an application that will test Flash visual-

ization capabilities on real data.

CHAPTER 4

THE PROPOSED FRAMEWORK

This chapter describes the conceptual structure of a collaborative visualization framework,

designed to allow for an easy and lightweight implementation of both the framework and

the client applications. The framework main entities roughly correspond to the phases of the

Haber - McNabb visualization model described in chapter 2. Additionally, framework entities

are adapted to allow for efficient collaboration support.

4.1 Visualization Pipeline

The visualization pipeline describes the transformation steps that bring from one or more

sets of numerical data to a visualization of their content. The dataflow model described in

2.1.1 is the best known example of a visualization pipeline. Figure 16 illustrates the main

components of the visualization pipeline defined by the presented framework. Three compo-

nents of the pipeline (Data Cubes, Visualizers, and the Canvas) have functionalities that can

respectively be mapped to the three phases of the dataflow model (Filter, Map, and View). In

this regard, the conceptual framework described in this chapter does not define a novel vi-

sualization methaphor: instead it expands or refines several concepts of a standard model to

integrate interactivity and collaboration support while keeping the entire design as simple to

implement as possible. Next sections will present in detail each framework element.

46

47

16. The main elements of the framework visualization pipeline.

4.1.0.1 The View

The central element of the visualization framework is the View. A View is simply a visual

representation derived from one or more sources of data. Three main elements are involved

in the process of creating a View: DataCubes, Visualizers, and the Canvas.

4.1.1 Data Cubes

DataCubes locally store the actual data that will be used to generate the visualization.

DataCubes are obtained trough queries to Data Services. Data Services mediate the access

to remote data sources, and fill the local DataCubes with the requested data. Queries are

essentially composed by a set of filters that determine the properties of desired data (ie space

boundaries, time reference, detail levels and so on).

48

4.1.1.1 Visualizers

Visualizers perform the mapping process between numerical data and its visual repre-

sentation. Different visualizer implementations generate different visualizations of the same

DataCube. Visualizers can implement generic visualization metaphors (ie the mapping of a

scalar field to a 3d heightmap), or define application-specific visualization techniques. A visu-

alizer may access three input sources:

• A DataCube containing the data used to generate the visualization.

• A set of Visualizer-specific options that control the way the visualization is generated (ie

color gradients, opacities, tessellation levels, ...)

• A set of metrics used to convert numeric units (meters, seconds, ...) used in source data

to nondimensional 3d units used by the visualization. Unlike visualizer-specific options,

metrics are shared by all the visualizers which are part of the same view. This greatly

helps in the creation of consistent views, and simplifies dimension scaling operations.

4.1.2 The Canvas

The Canvas represents the viewport in which the View will actually be rendered. View-

point options determine the characteristics of the virtual camera used to observe the view, like

position, zoom, rotation etc.

49

17. Two clients working on different views managed by the same workspace service.

4.1.3 The View Definition

Filters, Visualizer Options, Metrics and the Viewpoint all together form a View Definition.

A View Definition is a simple data structure that completely defines how a View should be

created. Given a view definition, an application based on the framework should be able to:

• connect to the requested Data Services (if available);

• obtain correctly filtered data cubes;

• instantiate needed visualizers, attach them to related data cubes and set up their param-

eters;

• setup the canvas viewpoint.

At the end of this process a visualization that exactly corresponds to the view definition can

be rendered.

50

4.2 Collaborative visualization

A view definition can be implemented by a relatively lightweight data structure. Defi-

nitions can then be easily exchanged between remote users, carrying around information on

how to build visualizations from client to client. The controlled exchange of view definitions

is actually the basis of cooperative services offered by the framework.

4.2.1 The Workspace Service

The core of cooperative functionality is the Workspace Service. A workspace service acts

mainly as a repository of views. Users can publish their views on a workspace or connect

to views published by others to participate in a cooperative session. It is worth noticing that

users connected to the same workspace may be participating to different cooperative sessions.

As an example in figure 17 clients 1 and 3 are cooperating on view A while clients 2 and 4

are working on view B. Being connected to the same workspace though, all the clients will be

able to see newly published views by other users, connect to any of the published views and

communicate with other users.

4.2.2 Update policies

As underlined above, cooperation is achieved mainly by sending around view definition

updates. The cooperation metaphor (ie the way in which users will actually collaborate in a

cooperative session) can be described by two main factors:

• Which components of a view definition are part of update messages (a subset of filters,

visualizer options, metrics, viewpoint definition);

51

• What is the filter policy used by single client in sending and receiving those updates.

The conceptual framework currently defines two different kinds of update message:

• Camera updates carry only the viewpoint component of a view definition;

• View updates carry a complete view definition.

The possible filter policies applied to update messages may be:

• input: a client will accept updates from other clients;

• output: a client will broadcast local updates to other clients;

• input-output: both of the above.

The definition of a filter policy for each class of update, possibly in different ways for each

participating client, determines the applied cooperation metaphor.

4.2.3 Cooperative configurations

Figure 18 illustrates three of the possible collaborative configurations supported by the

collaboration model defined in section 4.2:

• in figure 18A three clients cooperate in defining the contents of the view, but each client

has his own independent viewpoint;

• in figure 18B a single client determines both view content and the viewpoint, and sends

updates to two clients which act as passive viewers;

• in figure 18C shows an exotic, yet possible, cooperative configuration: a client chooses

the viewpoint while the other one determines view contents.

52

18. Examples of collaborative configurations supported by the framework.

4.2.4 Overall application structure

Figure 19 illustrates the architecture of a complete visualization application based on the

presented framework. The user manipulates the view definition, and looks at the manipu-

lation result on the canvas connected to the view. The canvas contains the data cubes and

visualizers used to generate the visualization, makes requests to data services and possibly

communicates to the remote workspace to manage a collaborative session.

4.3 Summary

This chapter defined a conceptual framework for collaborative visualization. The frame-

work was not designed to introduce any new visualization methaphor: its core concepts, the

Data Cubes, the Visualizers and the Canvas are based on the same concepts which can be

53

19. Overall structure of a visualization application.

found in the standard dataflow model. The framework defines instead a new concept that

adds both interactivity and collaboration to the dataflow model: the View Definition. The

view definition is a complete and lightweight descriptor of the contents of a view. Each el-

ement of a view definition is a parameter of one of the core elements of the visualization

pipeline. The exchange of view definitions is the basis of collaborative support. View defini-

tion shared by clients through Workspace Services, and view definition updates are sent and

received depending on a set of filter policies defined locally by each client: these filter policies

define the collaboration rules used by the set of clients that are working on the same view.

Section 3.1 defined some constraints for technologies that could be considered for web-

based visualization application developement: One of these constraints was ease of develope-

54

ment. This constraint depends not only on the technological choice, but also on the design of

the system that is going to be implemented. This is the reason why the number of entities and

entity interactions introduced by the conceptual framework has been kept as low as possible:

the purpose is to simplify the implementation of the framework itself, independently from the

technology chosen to implement it.

CHAPTER 5

FRAMEWORK IMPLEMENTATION

This chapter will describe the implementative details of QbViz, a prototype flash-based

visualization library. The QbViz client API has been implemented as a set of ActionScript

classes that directly map to the conceptual entities described in chapter 4. The server backend

is currently implemented in C#, although other language choices are possible for alternative

implementations.

5.1 Client structure

The UML diagram of the principal framework client classes is shown in figure 20. The

following sections will present these classes in detail.

5.1.1 The Canvas Class

The Canvas class implements the drawing surface on which visualizations are rendered.

The class is implemented as standard Flex user interface component: this allows to easily use

it inside a Flex application layout, like one would do with any other visual component (i.e.

buttons, text areas and so on). Canvas internally manages all the viewpoint manipulation

logic, which supports mouse-controlled viewpoint rotation zooming and translation. View-

point manipulation can be disabled, if one wants to control the viewpoint directly inside the

application logic.

55

56

20. UML digram of client-side QbViz classes.

A Canvas instance has associated a View object, which represents the definition of the cur-

rently rendered view. A Canvas can optionally be associated with a Workspace object, to en-

able View sharing and collaboration between remote users connected to a common Workspace

service.

57

21. Sequence diagram of a canvas update process.

The most important methods of the Canvas class are:

• Refresh, which performs a local refresh of the visualization. The contents of the canvas

will be updated to reflect the possibly changed view definition inside the View object

associated with the canvas;

• CommitView, which performs both a local refresh, and sends a view update to all the

other clients connected to the same view;

• LoadView, which loads a view from the workspace service, and attaches it to the canvas.

The LoadView method is commonly used to initiate a collaborative session on the client.

58

When a user wants to interact with a view and see the outcome of the manipulation on the

canvas it is attached to, he has to perform the following operations (see Figure 21):

1. the user modifies some properties of the View definition (i.e. cube filters, visualizer

options, metrics, ...);

2. the user marks modified cubes or visualizers as dirty, through the VisualizerInfo and

CubeInfo dirty property. This allows the canvas to quickly identify elements that need

an update, without the need to perform complex traversal and comparisons with the

previous view structure;

3. the Canvas.commitView method is called. The Canvas.refresh can be called in-

stead of commitView if the user explicitly wants to avoid broadcasting view updates to

other users;

4. user code can optionally listen on the canvas for RELOAD_STARTED, RELOAD_COM-

PLETE and REDRAW events to monitor the ongoing refresh process. These events re-

spectively signal the begin of data request for the new visualization, the completion of

data request and the end of canvas redrawing.

5.1.2 The Visualizer Class

Visualizer is the base class for visualizer implementations. A Visualizer instance is

always associated with a VisualizerInfo object, that describes the properties of the visual-

ization. the VisualizerInfo object is a complete descriptor of the visualization, meaning it

stores all the information needed to instantiate and initialize a visualizer. Classes that derive

59

from Visualizer must at least reimplement the update method, that should completely

regenerate the geometry (or other representation elements) managed by the visualizer. This

method will be called whenever a new version of the visualized data has been retrieved. De-

rived classes can optionally override the resetMetrics and resetOptions methods, that

are called respectively when view metrics or visualizer options have changed, without requir-

ing a full data reload. Redefining these methods allows a visualizer to avoid useless (and

potentially time demanding) full visualization updates.

5.1.3 The DataCube Class

A DataCube instance represents a generic set of data used for visualization purposes. A

DataCube instance is associated with a DataService object, which actually performs the

data request and retrieval operations. A DataCube also contains a CubeInfo object that

describes the properties of the data cube. This is the same exact decoupling of descriptive and

functional parts of the object that has been applied to the Visualizer class. As explained

in section 4.2 this separation allows to easily build a complete and compact view definition,

made only of the descriptive components of the view.

5.1.3.1 Data format

Data stored inside data cubes is conceptually represented by an array of data elements:

each element can be a scalar, a vector or some other structured type depending on the format

of the source dataset. A problem with this type of data representation arises in the case of

remote data requests: executing these request can be quite inefficient depending on the applied

serialization format. A serialization format describes the way in which structured objects are

60

22. Data layouts of standard and optimized data serialization formats.

converted into a linear representation of their content, for storage or transmission purposes.

It has been underlined that the current QbViz implementation uses flash remoting as its main

communication technology. Flash remoting employs a data serialization format called AMF3,

(37). When an object array is serialized in a data stream using the AMF3 format each data

element carries a significant overhead associated with its type definition (figure 22a). The type

definition describes the structure of the serialized object, like the name of fields, the type of

serialized values and so on. This overhead can be extremely relevant, up to 30% of stream

length in experimental tests using the application prototype presented in chapter 6. Its worth

noticing that the need for a type definition of each object inside a serialized array has sense

only when handling arrays made of eterogeneous elements. In the case of data cubes though,

the data stream are always made up of arrays of elements having the same structure (i.e. the

elements are all scalars, or vectors, or other omogeneous datatypes). This allows to use a much

61

23. Sequence diagram of a Data Cube reloading process.

more compact serialized representation of data: The entire element sequence is serialized as an

array of bytes (which requires a negligible overhead in the AMF3 format), and a single object

containing the type description sent together with the data (figure 22b).

5.1.4 The DataService Class

DataService is the base class for objects that expose dataset access functionalities in-

side QbViz. A DataService instance can create DataCube objects and fill them with data

matching the filters found inside the cube definition.

A DataService derived class must at least implement the reload method, which man-

ages the update of a data cube.

The only data service implementation currently offered by QbViz is RemoteDataService,

which offers access to a remote data source, exposed through QbViz server components, using

62

24. Diagram showing how view updates are communicated between two clients.

a flash remoting communication channel. A sample cube reload sequence is shown in figure

23

5.1.5 The Workspace Class

The Workspace class is used to manage all the collaborative features of a QbViz appli-

cation. Upon creation, a workspace connects to a remote, user-specified workspace service.

All clients connected to the same workspace service are logically part of the same collabo-

ration session: they can publish views and manipulate them cooperatively. The easiest way

to exploit collaborative services is to associate a workspace with a canvas instance, using the

Canvas.workspace property. When the canvas is showing a shared view, it will automati-

cally use workspace services to send and receive view updates from other users (figure 24).

63

25. Remote method invocation through a flash remoting gateway.

User code can also directly access some other workspace features through its methods:

• addView and removeView are used to respectively add and remove a view from the

published view list.

• sendMessage allows to send text messages to other users. message reception will be

notified by the ChatMessage workspace event (see section 5.3)

5.2 Server structure

Most of the server side classes replicate the structure of client-side equivalents. This is due

to the fact that the majority of server objects takes part in remoting interactions, either as a

proxy or a serializable object.

5.3 Client-Server communication

The communication between client and server is handled by a remoting gateway. A re-

moting gateway is installed as a classic server-side application component. It intercepts all

64

26. Handling communication between client and the workspace through message queues.

HTTP requests related to remoting invocations, and performs the actual calls inside applica-

tion server code. The gateway handles also the deserialization of call arguments into server-

side types, and serializes back the result is a format readable by the client-side actionscript

code (figure 25). QbViz currently uses WebOrb (39) as its remoting gateway, although other

choices are possible (i.e. Fluorine, (53)).

There are two distinct patterns of communication needed by the framework:

• Standard request-response: the client invokes a method on a server-side object, and

possibly waits for the asynchronous response.

65

• Server-side events: the server has to notify an event to the client (i.e. an action per-

formed by another user in a collaborative session.

The standard request-response pattern, being initiated by the client, follows the normal re-

mote invocation pattern, and poses no particular development difficulty. Server-side events

instead, cannot be implemented directly, since remote method invocation is always unidi-

rectional and goes from client to server (mapping exactly on HTTP request-response primi-

tives). A straightforward way to solve this problem is to manage also server-side events with

a request-response pattern. The implemented solution is shown in figure 26: the server keeps

a set of message queues, one for each connected client. These queues contain event notifications

(messages) directed to the respective client. Each client periodically sends a Poll request to the

server which replies with the list of all the messages for that client, and then clears the queue.

All of workspace client notification are handled using message queues. Currently, QbViz

implements four types of messages:

• ChatMessage: Contains a text message sent by a user to some or all of the other clients

in the workspace. ChatMessage can also be used by the server to send textual notifica-

tions to specific clients.

• ViewAddedMessage: Notifies the user that a view has been added to the workspace.

The message contains the unique name of the view, and optionally the URL of a view

thumbnail, a small image that contains a snapshot of the view. This image can be used by

the client application to offer preview functionality for visualizations.

66

• ViewRemovedMessage: Notifies the user that a view has been removed from the work-

space.

• ViewUpdateMessage: Contains update information for a view. This message can trans-

port three types of updates: content updates, camera updates or state updates.

Content updates contain a complete view definition that is sent to all the users connected

to a specific view, so that they can update the local view when a remote user makes some

change in the view contents (i.e. he adds a visualizer).

Camera updates contain just a viewpoint definition. When update filters are configured to

allow so, camera updates are used to communicate viewpoint changes, without requir-

ing a complete view refresh as a content update message would do.

State updates carry information used to refresh the visualization preview only, i.e. a new

thumbnail URL or an updated list of users connected to that view. State updates are the

only update message which is sent to all the users connected to a workspace, and not

only to the users that are actually working on the specific view.

5.4 Summary

This chapter presented the implementation of a prototype visualization framework based

on the concepts introduced in chapter 4. The developed framework has been used to build

Hydroviz, a test-case collaborative application targeted at hydrographic visualization. The de-

scription of Hydroviz will be the object of next chapter.

CHAPTER 6

HYDROVIZ, A TEST-CASE APPLICATION

This chapter presents Hydroviz, a test-case visualization application implemented using the

QbViz framework prototype described in chapter 5. The application, targeted at hydrographic

visualization, can be run from a normal web browser and makes use of both 3d visualization

and collaborative features offered by QbViz.

6.1 Purpose of the application

The application has been inspired by the collaboration between the Electronic Visualiza-

tion Laboratory at University of Illinois at Chicago and the University of Illinois at Urbana

Champaign to visualize salinity and currents in Corpus Christi Bay, Texas. The application

prototype is able to visualize a qualitative 3d model of the bay, and decorate it with salinity

and current flow information under user control. Collaboration support and ease-of-access

were also considered important requirements during the application design and implementa-

tion phases.

To achieve efficient data access, an additional requirement was to preprocess and convert

the source dataset to a suitable format and store it on a database. Details about this operation

are presented in next section.

67

68

Category Data fields Total size
Bathymetry node ID; x, y coordinates (UTM); depth (meters) 145Kb

Salinity timestamp (seconds); node ID;
vertical layer ID; salinity 166Mb

Currents timestamp (seconds); node ID;
vertical layer ID; x, y velocity (m/s) 210Mb

Layers layer ID; depth (meters) 1Kb

II

OVERVIEW OF SOURCE DATA STRUCTURE.

6.1.1 Available data

The original source data has been made available by Texas Water Development Board.

Data collection points were distributed non-homogeneously over the bay (figure 27) and sam-

pled salinity, current speed and direction at various depths. Data collection lasted about three

days, with a sampling interval of two hours. There were 4216 distinct data nodes, collecting

21 depth samples on average for a total of 35 time snapshots. The total number of datapoints

is slightly more than 3 millions. For each data collection point, the exact depth of the bay

has also been made available. Source data has been provided as a set of plain text files. Each

row in the these files contains a set of tab-separated records with information about a specific

datapoint. The overall dataset has been split in four main groups. The exact format and size

of data for these groups is reported in table II.

Source data has been preprocessed, and put inside a database for easier and optimized

access by the application data service. The format of data stored on the database is illustrated

in table III. The database representation is basically a compact version of source data. There

69

27. Distribution of measurement points in Corpus Christy Bay

70

Table name Data fields Total size
node ID; x, y coordinates (UTM);

Datapoints layer ID; salinity;
x, y velocity (m/s); timestamp (seconds); detail 200Mb

Layers layer ID; depth (meters) 1Kb

III

PREPROCESSED DATA STRUCTURE.

is a single field not present in the original data: detail. This field is calculated by the data

preprocessing tool and is used to mark datapoints belonging to different detail levels, to allow

for faster data retrieval by the layer visualizer (see section 6.3.2).

Bathymetry data is not stored on the database. Another preprocessing tool has been de-

veloped to convert it into a heightmap, which is used by the bathymetry visualizer to build a

qualitative 3d model of the bay at runtime. Details about the bathymetry visualizer can be

found in section 6.3.1

6.2 Application layout

Figure 28 shows a browser window running an instance of the Hydroviz application. The

application has been designed to leave as much space as possible to the visualization. Much

of the controls and manipulation tools offered by the application are grouped in panels that

disappear or minimize themselves when the user is not interacting with them. The application

controls and tools are collected into five main areas: the toolbar, the map panel, the layers

panel, the workspace panel and the chat window (figure 29). The following sections will

present each component of the hydroviz interface in detail.

71

28. A screenshot of the Hydvoriz client application running.

29. Hydroviz application layout. Arrows indicate how panels expand when selected

72

30. The Hydroviz toolbar.

6.2.1 The toolbar

The toolbar is placed on the top edge of the application. It contains buttons and controls

that serve various purposes:

• The collaboration filter buttons are used to setup the update filters used in collaborative

sessions. Clicking on a button will loop through the configuration options available for

the relative filter. An example usage of collaboration filter will be described in section

6.4.6.

• The streamlines panel button opens a window used to configure visualiation options

for interactive streamlines. The example presented in section 6.4.5 illustrates the usage

of streamlines.

• The datapoint selection toggle, when enabled, allows the user to select single datapoints

in the visualization and interact with them. When the selection toggle is disabled, user

interactions with the visualization will affect the viewpoint position instead.

• The timeline is used to visualize data corresponding to the specified time offset from

the start of data collection. The two (+) and (-) buttons at the sides of the slider are used

to advance or bring back the time by a single sampling interval, which corresponds to

73

31. (from the left) The map, layers and workspace panel.

about 2 hours as explained in section 6.1.1. When the time offset is changed, all time-

dependent visualizers instantiated in the view will be updated accordingly.

6.2.2 The map panel

The map panel (shown in figure 31 is used to define the current region of interest for the

visualization. The user can define the visualized region by simply click-dragging to draw a

rectangle over a satellite view of the bay. The map panel also contains controls used to fine-

tune the generated 3d model of the bay: the user can define depth exaggeration factor, or

adjust parameters used to generate the texture that will be attached to the 3d model.

6.2.3 The layers panel

The layers panel (figure 31) allows the user to add layers of data to the visualization, delete

them or configure their parameters.

74

A layer is basically a visualization of a salinity and currents data for a specific region of the

bay.

Each layer can show information for a specific depth under the water surface (a ’flat’ layer),

or show data for a depth interval (a ’slice’ layer).

A layer can optionally visualize salinity or currents data information only. Data can also

be visualized at different detail levels. See section 6.3.2 for a detailed explanation of layer

visualization.

6.2.4 The workspace panel

The workspace panel (figure 31) is used in collaborative application sessions.

The workspace represents the shared repository where users can publish their views, or

connect to views published by others to participate in cooperative visualization.

Each time a user adds a view to the workspace, a thumbnail of the view will be added to

the workspace panel of all the users currently logged inside the application. Users can click

on thumbnails to open a context menu that allows them to connect to the view, delete it or

potentially perform other view-related operations.

Each view thumbnail can be decorated by two icons that indicate if the local user is actually

connected to that view, or if other remote users are.

6.2.5 The chat panel

The chat panel offers basic chat functionality to logged on users. All the users connected

to the application join a common chat room: users can chat with each other even when they

are connected to different views.

75

6.3 Visualizers

The Hydroviz application implements several ad-hoc visualizers: Bathymetry, Layer, Stream-

line and Annotation. All these visualizers can be part of a Hydroviz View. Three of them

(Layer, Streamline and Annotation) can also be placed on the view multiple times and with

different definitions, to build more complex views.

6.3.1 Bathymetry Visualizer

The bathymetry visualizer is used to display a qualitative 3D model of the bay. This rep-

resentation is mainly based on a texture-mapped heightfield. Source data used to generate

the model comes from bathymetry information available in the source dataset. The source

bathymetry information is transformed into a heightmap (40). A heightmap is greyscale im-

age, in which each pixel represents the height (or depth) of a specific point on a 3d plane (the

heightfield). The plane is then deformed using the heightmap information, to generate the

3d displacement described in the heightmap. A detailed description of heightmap generation

from the original, sparse bathymetry data can be found in appendix A.

It is worth noticing how in the case of bathymetry visualization the source of data for the

visualizer is not a data cube, but an image (the heightmap), The bathymetry visualizer is there-

fore not associated to any datacube. This is a perfectly consistent situation for the framework.

The only requirement for a visualizer is to expose a visualizer definition that identifies it inside

the view. The way in which the visualizer actually loads its data is entirely up to the visualizer

implementation. Data cubes represent just a common way to access data sources, their usage

can be avoided completely, if a specific visualizer does not require them.

76

32. Representation of a datapoint glyph, indicating how data items are mapped to graphic
features.

The bathymetry visualizer loads the heightmap using the standard flash image API. The

image is retrieved from the web server through a common HTTP request. The visualizer does

the same to retrieve the satellite imagery that will be attached on the 3d model to give it a more

realistic look.

The bathymetry visualizer is also able to display specific areas of the bay. The region of

interest is defined by the x and y filters in the visualizer definition. The filters define the

horizontal and vertical intervals that identify the region of interest, in UTM coordinates.

6.3.2 Layer Visualizer

A layer visualizer displays salinity and currents data for a user-specified region and depth

of the bay. Visualization of the datapoints is achieved using glyphs, (9)(10). Glyphs are sym-

bols used in the visualization of multi-variate data: whose geometric (e.g., shape, size, orien-

77

tation) and non-geometric (e.g., color and texture) visual attributes are determined by the data

they represent.

Glyphs used by the layer visualizer represent information about salinity, current direction

and current speed using colors and glyph orientation. The configuration of a glyph is de-

tailed in figure 32. The user can configure the format of glyphs visualized by a layer, deciding

whether to show salinity information only, currents information, or both.

Additionally, the user can specify the detail level used by a layer visualizer. Higher detail

levels lead to more dense visualizations (i.e., more glyphs will be displayed). The Hydroviz

data service is able to quickly retrieve and send to the visualizer just the datapoints that will

be actually shown for a specific detail level.

The layer visualizer also supports selection of glyphs. It is possible to click on a glyph and

obtain more precise information about the corresponding datapoint (like the actual numerical

values of salinity level and current speed). When clicking on a glyph, a contextual menu is

shown, exposing additional operations that can be performed on the selected datapoint, like

adding an annotation (section 6.3.4), or creating a streamline (6.3.3).

6.3.3 Streamline Visualizer

A streamline is a line for which a tangent in any point is parallel to the vector field. More

formally, a streamline is calculated by integrating the following equation:

dx
dτ

= v(x, t) (6.1)

78

where x is the position in space, v is a velocity field, and t the time. The integration variable,

τ , is a pseudo-time variable because the velocity field does not vary through time. A bucket of

streamlines is commonly used in steady flow analysis because it expresses the structure of the

field, and allows for the detection of vortices.

The hydroviz application is able to interactively display streamlines, starting them from

user specified points. The user can access to the streamline generation tool from the datapoint

context menu, as explained in section 6.3.2

Computation of the streamline is done on the server. This avoids having to compute the

streamline multiple times on each client in collaborative scenarios, and reduces the amount

of transferred data (a streamline datacube is usually much smaller that the relative layer dat-

acube). Streamlines are sent to client as a list of points in UTM coordinates. Each point also

carries information about sampled salinity and current speed. The streamline visualizer draws

the set of points as a continuous 3d line, optionally decorating it with information about salin-

ity and speed. The user can place multiple streamline visualizers on the view. Each streamline

visualizer manages a single streamline.

6.3.4 Annotation Visualizer

The annotation visualizer allows the user to add georeferenced text notes to the view. It

is possible to attach an annotation to a layer datapoint, selecting the relative option in the

datapoint context menu.

As for streamlines, each annotation is managed by its own annotation visualizer. The data

needed by an annotation visualizer is really simple: a point in UTM coordinates and a string

79

33. Streamline visualization.

containing the annotation. For this reason, annotation visualizers do not use any data service.

Information associated with an annotation is embedded directly in the visualizer definition as

custom data. This is another example of data access flexibility offered by the QbViz frame-

work.

6.4 Application usage scenarios

This section will present several examples of usage of the Hydroviz application. Each sce-

nario will be introduced by a brief explanation of the task that the users is trying to accomplish.

A detailed description of the interaction with the application will follow. The purpose of user

scenarios is to identify several common interaction patterns with the application. The detailed

80

34. Model manipulation using impostors.

description of actions that users need to perform in order to achieve the task can be used to

assess the functionality and ease of use of the application.

6.4.1 Basic 3d model exploration

The user wants to access the application, and simply explore the 3d model of the bay. He

wants to observe the model from different viewpoints, and view some of its regions in detail.

1. Login: the user specifies its name in the login window. This name will be used to identify

the user in the chat window and in the workspace panel.

2. Manipulate the viewpoint: after logging in the user is presented with an default view con-

sisting only of the bay model. Clicking on the view and moving the mouse will rotate the

81

35. The same bay area visualized using different model parameters.

viewpoint around the model. Holding the Shift key while moving the mouse vertically

will modify the zoom level. Holding the Ctrl key will change the viewpoint position.

When changing the viewpoint, a red indicator plane is shown (figure 34). The indicator

plane will stay on screen and will give the user a hint on how the viewpoint is chang-

ing. When the mouse button is released, the indicator plane will be substituted by the

actual updated view. This technique is used instead of real-time updates of the model

to achieve good reaction times even on complex, data-rich visualizations, and on slower

machines.

3. Define the region of interest: the user changes the currently visualized region by click-

dragging on the map view in the map panel on the top-right corner of the application.

The visualized model will be immediately updated to show just the area of the bay de-

fined by the user.

4. Tune the model visualization: using again the map panel, the user can define some proper-

ties of the bay model, like the depth scale factor, the opacity and contrast of the texture

82

applied to the model. Figure 35 shows how different views of the model can be achieved

manipulating these parameters.

6.4.2 Basic data visualization

The user has to visualize salinity information for a specific region and depth of the bay.

Additionally, he wants to display current direction and speed data for a subset of that region.

1. Define the region of interest: the user interacts with the map panel to define the visualized

region.

2. Add a data layer: through the layers panel, on the right side of the screen, the user adds

a data layer to the visualization. By default, the data layer will show both salinity and

currents information at a low detail level. The layer region of interest will correspond to

the currently visualized region of the bay.

3. Set layer properties: the user selects the newly created layer on the layers panel, and sets

the desired layer depth. Additionally, the users disables current visualization through

the salinity checkbox.

4. Add another data layer: using again the layers panel, and defines its parameters.

5. Change layer region: to modify the second layer region of interest, the user selects the

layer and goes to the map panel. The selected layer region of interest will be shown as

a yellow box. To change it, the user click-drags on the map panel, while holding the

shift button pressed. The final result is shown in figure 44, figures appendix.

83

6.4.3 Visualizing time dependent data

The User needs a qualitative view of salinity level variations over time for the entire bay

area.

1. Setup the view: the user adds a data layer covering the entire bay area, disables currents

visualization and sets a medium detail level.

2. Manipulate the timeline: the user manually advances the time offset, moving the timeline

slider near the half of the timeline. The view is reloaded, showing salinity data for the

specified time step.

3. Compare data snapshots: holding the Ctrl and Shift keys, the user clicks on the visu-

alization and drags the mouse horizontally, obtaining a variable crossfade between the

current visualization and the previous one. This allows the user to clearly identify the

regions of the bay where salinity is changing. This feature can be used whenever a visu-

alization is updated, and allows the user to quickly compare the new visualization with

the previous one.

6.4.4 Using depth slices

After accomplishing task 6.4.3, the user wants to get more detailed information about the

region were salinity has the greatest variation over time. In particular, he wants to visualize

the differences in salinity levels at different depths.

1. Setup the view: the user defines region of the bay he wants to analyze on the map panel.

The user deletes the previous data layer, and creates a new one whose region will au-

84

tomatically correspond to the currently visualized area. The user could also manually

modify the region of interest of the previous layer, instead of creating a new one.

2. Define a slice layer: user manipulates the vertical slice height and detail parameters on

the layer panel to create a set of "salinity columns" that show salinity information for

each datapoint at various depths (figure 48, figures appendix). The layer detail can be

regulated to limit the number of datapoints, and obtain clearer view.

3. Get quantitative datapoint information: the user enables datapoint selection, using on the

fourth toolbar button from the left. Clicking on the view now lets the user select data-

points: the user can concentrate on a salinity column and click on it at various depths, to

see the precise variations of salinity level.

6.4.5 Streamline visualization

The user needs to analyze the currents that flow through the bay. He wants to understand

if water stream passing from several adjacent points tend to go in the same direction, or if they

diverge. Additionally, he wants to see if those same flows change over time.

1. Setup the view: the user selects the region of the bay he wants to analyze, and adds a new

data layer, with medium detail.

2. Configure streamline visualization: the user opens the streamline configuration panel, us-

ing the third button from the left in the upper toolbar. From the configuration panel, the

user can decide the length of generated streamlines, and their detail level. The applica-

85

tion will warn the user if the specified parameters may lead to long streamline compu-

tations.

3. Create streamlines: the user enables datapoint selection (see section 6.4.4), and clicks on

one point he wants to be the source of a streamline. On the context menu, the user

chooses the Streamline from here option. This operation is repeated for each of

the points the user wants as streamline sources. The result is shown in figure 46 and 47,

figures appendix.

4. Compare data snapshots: the user can now manipulate the timeline, to see how currents

starting from the selected points vary at different time offsets. It is possible to compare

different time snapshots using the same technique applied in section 6.4.1.

6.4.6 Collaborative visualization

Two users want to setup a collaborative visualization session. In particular, a user wants to

share his local view with another user and get feedback from him. Additionally, the first user

wants to have his viewpoint controlled by the other client, so that both users see data from the

same exact position.

1. Login: each user opens an application session inside his browser, and logs on using a

recognisable user name. After logging in, the users can communicate through the chat

panel to coordinate the collaborative session.

2. Setup the view: the first user creates the desired visualization, manipulating data layers

and streamlines as explained in previous scenarios.

86

3. Share the view: the first user opens the workspace panel on the left side of the screen, and

clicks on the Add to workspace button. A thumbnail of his current view appears in

the workspace panel of all users. The second user can click on the view thumbnail and

select the Get view context menu option to load the view in his local canvas.

4. Manipulate the shared view: update filters are configured by default to broadcast view

updates (as indicated by the second button from the left on the upper toolbar). Each

modification done on the visualization by any of the two users is sent to the other. The

users can now work together on the visualization content, while communicating through

the chat panel.

5. Add an annotation: the second user wants to attach an annotation to a specific datapoint.

He enables datapoint selection, selects a layer and clicks on a datapoint. On the con-

text menu he chooses the Add annotation option. An annotation appears inside the

visualization of all users connected to the view, linked to the specified datapoint. The

user can now add some line of text to the annotation, and click on the Save button to

broadcast the annotation update. Any user can modify the annotation content, not only

the one who created it.

6. Synchronize the viewpoint: the first user wants the second one to get control of his view-

point. He clicks on the viewpoint settings button (the most-left button on the toolbar)

until the Input only option is selected (represented by a green arrow pointing to the

magnifier icon). Each time the second user changes his viewpoint, the update will be

applied to first user local viewpoint too.

87

6.5 Summary

This chapter described the implementation and functionalities of Hydroviz, a web appli-

cation aimed at collaborative visualization of hydrographic data. The application has been

developed to test the potential of the supporting framework and of the flash technology on a

real visualization scenario. The application design followed the criteria introduced in section

3.1 (namely: ease of use, 3d visualization and collaboration support, enjoyement). To evaluate

the application, a set of interaction scenarios has been defined: these scenarios cover almost

every aspect of the interaction between a user and the application. The concretization of these

scenarios (i.e. the actual set of operations users has to perform to achieve the corresponding

task) can be used as a first qualitative hint of the effectiveness of the application in respecting

the identified requirements. The scenarios show how the majority of the tasks can be com-

pleted through simple operations, that require a limited training of end users.

The following chapter will present an evaluation of the overall work developed in this

thesis.

CHAPTER 7

CONCLUSIONS

On previous chapters, the basic requirements for a web-based visualization system were

presented and discussed. The choice of flash among other technologies was motivated mainly

by its ease of use and power to create interactive and rich web applications. Diffusion of

the technology also played an important role in the choice. A simple collaborative data vi-

sualization framework has been designed. The visualization pipeline has been structured to

respect the standard Filter-Map-View visualization model. Architectural, as well as technolog-

ical choices have been made to ease the implementation of the data access and collaborative

components of the framework. The framework prototype, named QbViz, has been imple-

mented as a set of ActionScript classes. The framework and has been used to develop Hy-

droviz, a collaborative web application to display salinity and currents data for the Corpus

Christi Bay area. This chapter will present some final considerations about the overall work

presented in this thesis, evaluating both the technological choice (using Flash to develop a

web-based visualization application) and the actual developed system.

7.1 Evaluation

As explained in section 1.4, it is significant to evaluate the effectiveness of Flash, and of the

developed visualization framework, using the set of requirements that have been identified

for a web-based visualization system targeted at common users. These requirements were

88

89

presented in section 3.1. Each of the requirements will be recalled here to comment on the

respective, specific aspect of the developed system.

7.1.1 Simple Access

Requirement: the application should avoid the need for the user to install custom or third party

browser extensions. Widespread and trusted technologies should be used whenever possible.

Flash, being the most diffuse browser extension, clearly satisfies this requirement. Appli-

cations and content developed in Flash are seamlessy downloaded and executed in a trusted

environment on user machines. Flash players releases are always backwards compatible with

previous versions, and when content needs a player version newer than the one installed on

the user machine, the user is conveniently guided through the update process, which usually

takes just some minute. Also, flash executable (.swf) files use efficient compression techniques

of both data and code. In the case of Hydroviz, the complete application is made up of a single

.swf file of about 600Kb. This guarantees short loading times for the application.

7.1.2 Ease of use

Requirement: the application should offer an easy to use interface, one that an untrained user can

learn by himself with little or no assistance.

The evaluation of this requirement was based mainly on user scenarios presented in section

6.4. The scenarios show how several functionalities of the applications, like model exploration,

data analysis and collaborative work, can be managed through simple end user interaction.

The user can learn how the interface works after a very short training. Also, the interface itself

90

offers serveral hints (i.e. tooltips associated to the most important user interface elements) that

further guide the user in the interaction.

It is worth noticing how the positive evaluation of this requirement is not directly related to

the technological choice of Flash as a foundation platform. This was rather a result of design of

the application itself. Still it is important to underline how the technology efficiently supported

the design choices, allowing for fast prototyping and tweaking of the interface through the

FLEX framework.

7.1.3 Collaboration

Requirement: the application should offer some form of collaborative visualization support, either

synchronous or asynchronous

Collaboration support has been integrated directly into the design of the conceptual vi-

sualization framework described in chapter 4. The application itself did not have to directly

take care of any of the collaboration mechanics, since they were already part of the frame-

work. The visualizers developed for the application were automatically collaboration-aware.

The only part of the application code devoted to collaboration support was associated to user

interface features, i.e. the implementation of the workspace and chat panels. As for the "ease

of use" requirement, even in this case the platform choice is not directly relevant in the re-

quirement evaluation, but the choice of a technology that offers an advanced but easy to use

communication layer gives a strong advantage in developing collaborative features. Having

collaboration as part of the framework kernel, together with the simplicity of the platform, led

to a significant reduction of the developement effort, as it will be underlined in section 7.2

91

7.1.4 3D visualization

Requirement: Rendering and manipulation of mildly complex 3D visualizations should be sup-

ported.

It has been already underlined how the main limit of the presented implementation is its

lack of hardware accelerated 3d support. The use of impostors during interactive manipu-

lation of the view was a mandatory choice to guarantee application scalability: nonetheless,

impostors proved to be intuitive enough to guarantee an easy interaction with the visualiza-

tion. Another problem related to the lack of accelerated 3d arisen with the need to visualize

time dependent data: rendering animated 3d models at acceptable frame rates would have

been impossible. The only viable solution would be to perform on-demand prerendering of

several views, and give the user the possibility to play back the generated images. This has

been partially done adding support for snapshot comparison (as seen in user scenarios 6.4.1

and 6.4.5).

7.1.5 Enjoyment

Requirement: the application should be functional, but also offer a rich interaction experience to

users.

Objectively evaluating this requirement is difficult, since the interaction experience offered

by an application is difficult to assess by a simple inspection of the application itself. A de-

tailed user testing and validation phase is foundamental to better define the success of the

application in respecting this requirement: thorough user testing will be a high priority in

future work on Hydroviz.

92

Area Development time Classes Lines of code
QbViz client 40 days 40 3100
QbViz server 20 days 20 1000

Hydroviz client 30 days 20 3600
Hydroviz server 10 days 3 400
Hydroviz tools 10 days 4 700

IV

QBVIZ AND HYDROVIZ DEVELOPMENT STATISTICS.

Yet, It is important to note that the graphic experience of the current version of Hydroviz

(i.e. disappearing panels, animated context menus, crossfade effects and so on) was devel-

oped with no significative difficulty: once defined the interface design, its implementation

was straightforward. Also, many aspects of the interface can be customized through a simple

style sheet, allowing designers to fine tune the application graphic style, without any coding

effort.

The previous consideration underlines that, even if user testing would suggest some change

in the application interactive experience, these changes would likely be easy to implement

thanks to the chosen platform.

7.2 Development effort

Table IV shows the development effort and the amount of implemented code, for both the

framework prototype and the test case application.

The final framework prototype is quite compact, consisting of 60 classes for about 4000

lines of code. Once the framework prototype was complete implementation of the actual Hy-

droviz application revealed to be an almost trivial task. Much of the application development

93

time was spent on visualizer implementation. This was necessary since the framework did not

offer any visualizer template, and all the used visualizers had to be developed from scratch.

The developed visualizers can be easily adapted for generic usage. The bathymetry visualizer

for instance can be turned into a generic heightmap visualizer.

After developing a visualizer library on top of the framework, application development

will tend to get more and more easier, requiring also less time. Development of the application

visual interface was straightforward, thanks to the Flex framework. Visual interface features

can also be modified and fine-tuned very easily using a standard style sheet.

7.3 Platform Choice

The presented evaluation showed how the choice of Flash to develop a web-based collabo-

rative visualization application it not only possible, but also pretty effective in several aspects:

these aspects involve both the end user and the developer of the application. Some of the ad-

vantages offered by the flash platform could be obtained even through other technologies, but

paying a significative tradeoff in the developement effort.

It has also been underlined how flash presents important limitations when used for 3D

visualization. Due to these limitations it is clear how Flash does not completely replace other

technologies for scientific visualization over the web, but it represents a possible alternative

that is worth considering before starting developement. The final choice depends on the exact

visualization scenario that is being addressed.

This thesis suggested a possible guideline for this choice: if the visualization system does

not deal with complex 3D visualization (in this regard, animation is a major source of com-

94

plexity), and is targeted at common users that need quick access to the application and may

be pleased by additional graphic features, then Flash may be most effective choice.

7.4 Future Work

As already underlined, creating a basic visualizer library for QbViz would represent an

important addition to the framework: the availability of visualizer templates would increase

the ease of development of end user applications.

Another helpful addition would be the development of a generic view builder web appli-

cation, which allows the users to connect to custom data services and use the available visu-

alizers to create simple visualizations without the need of developing a custom application.

Some effort in this direction has already been spent during the first iterations of framework

development.

View definitions could easily support serialization and deserialization to a custom XML-

based format. This would allow to have visualizations persistently saved on a web server, and

then accessed by a QbViz applet through a HTTP request to embed them in a standard html

page (figure 36).

7.4.1 Hydroviz

An important improvement of the Hydroviz application is represented by the support of

data playback: the user should be able to add one or more data layers to the visualization,

and animate them to see how they vary over time. Since real-time animation is not possible

due to data transfer and software rendering limits. A solution could be on-demand animation

generation. The user would specify the time interval and detail of the playback sequence: a

95

36. Embedding QbViz visualizations in a HTML document.

96

preprocessing step would obtain the required data and generate the set of images that can

then be played back by the user. Viewpoint changes would be of course not possible during

playback. Changing the viewpoint could automatically trigger a re-rendering step of all the

animation frames: without the need of reloading the data this operation can be performed

significantly faster.

Another improvement of Hydroviz would be the addition of salinity isosurface visualiza-

tion: isosurfaces would allow for the easy identifications of 3d regions where salinity levels

are constant and equal to a user-specified value.

As suggested in section 7.1.5, a detailed user testing and validation phase of the Hydroviz

application could be an additional source of improvements and interface refactoring hints.

APPENDICES

97

98

Appendix A - Heightmap generation from sparse sample points

This appendix will illustrate the algorithm that generates the heightmap image used by

the Hydroviz bathymetry visualizer described in section 6.3.1. The heightmap generation al-

gorithm is the main component of the HeightmapGen tool of the Hydroviz software package.

.1 Overview

Figure 37 shows the data transformation pipeline used for bathymetry information inside

hydroviz. The HeightmapGen tool converts source bathymetry information to a heightmap

image and a heightmap descriptor. The heightmap descriptor contains information (UTM lati-

tude and longitude boundaries, bay depth maximum and minimum value) that is used in con-

junction with the heightmap by the Hydroviz application to generate a qualitative 3D model

of the bay.

The source information is the set of bathymetry sampling points that are part of the Corpus

Christi bay dataset. Source information is nonomogeneous: the distribution of sampling point

on the bay does not correspond to a regular grid. Generating a heightmap basically means to

map depth information to a dense, regular grid where each grid point corresponds to a pixel

in the destination heightmap image, and then apply a reversible color mapping to convert the

numerical values to actual pixel color values.

In the case of nonomogeneous data a heightmap generation algorithm should be able to:

• Interpolate depth information for points that are not covered by the source data.

• Identify areas that are not part of the sampling space (in the specific case in exam, these

are represented by islands, and anything else outside of the actual water-covered area

99

37. The heightmap transformation pipeline.

38. Identification of the valid sampling area.

100

of the bay). Points inside these areas are not interpolated, and should be marked in the

resulting heightmap (i.e. making them transparent). This is an important operation,

since doing a simple interpolation for areas outside of the real sampling space would

lead to non-significative heightmap values that would then result in a partially incorrect

3d model representation.

.2 Algorithm

Algorithm 1 HeightmapGen(Dataset, width, height, α)

1: heightMap = EmptyHeightmap(width, height)
2: for all < lat, lon, depth > in Dataset do
3: < x, y, color >= Map(lat, lon, depth)
4: if heightMap(x, y) = � then
5: heightMap(x, y) = color
6: else
7: return � {failure: two samples are mapped to the same heightmap point}
8: end if
9: end for

10: for all < x, y > in heightMap do
11: if heightMap(x, y) = � then
12: heightMap(x, y) = InterpolateSample(x, y, heightMap, α)
13: end if
14: end for
15: return heightMap

The heightmap generation procedure, summarized in algorithm 1, is divided in two steps.

Each bathymetry sample in the source dataset, containing information about latitude and lon-

gitude of a datapoint and the corresponding bay depth, is converted to image space. UTM

101

Algorithm 2 InterpolateSample(x, y, heightMap, α)

1: samples = NearSamples(x, y, heightMap)
2: if samples 6= � then
3: nearDistance = NearestSample(x, y, samples)
4: meanDistance = MeanSampleDistance(samples)
5: if nearDistance ∗ α < meanDistance then
6: return InterpolatedColor(x, y, samples)
7: end if
8: end if
9: return �

coordinates are converted to (x, y) pixel positions in the heightmap, while the depth value is

converted to a grayscale color. This mapping depends on the width and height of the desti-

nation heightmap, and on the number of grayscale color levels available for depth mapping.

The mapping is performed by the Map function used in the first half of algorithm 1.

The second step of the algorithm performs interpolation for points inside the valid sam-

pled area, and is entirely done in image space. The InterpolateSample function illustrated in

algorithm 2 executes the interpolation for a specified (x, y) point of the heightmap. The actual

interpolated color value is calculated by the InterpolatedColor function. This function can be

implemented as a weighted average of near samples, or may just return the color of the nearest

valid sample. InterpolateSample also performs the identification of points inside and outside

of the valid sample area, using the intuitive yet functional criterion illustrated in figure 38. A

point is considered inside the sample area (thus its value will be interpolated) if its distance

from the nearest sample point is not significantly bigger that the average distance between

local sample points. The α constant in algorithm 2 determines the acceptance threshold for

102

valid points, and has to be manually tuned depending on heightmap size and source dataset

distribution. For the Corpus Christi bay dataset, α was set to about 0.6.

103

Appendix B - Source code

This appendix presents an excerpt from the Hydroviz application source code. The re-

ported code implements the layer visualizer described in section 6.3.2. The layer visualizer

source is made up of two distinct classes: LayerVisualizer, which inherits the Visualizer base

QbViz class, and LayerDataPoint, which contains the draw logic for a single layer datapoint.

.1 LayerVisualizer source

public class LayerVisualizer extends Visualizer
{

// Visualizer Class ID
public static const ID: String = "Layer";

private var myLayer: Sprite3DContainer;

private var myX: Filter;
private var myY: Filter;
private var myScX: Number;
private var myScY: Number;

/*
* Class constructor.

*/
public function LayerVisualizer(info: VisualizerInfo): void
{

super(info);
}

/*
* Perform a complete data layer visualizer update.

*/
public override function update(): Boolean
{

var prof: Number = getTimer();

clear();

var roiCube: DataCube = canvas.cubes["ROI"];
var fx: Filter = roiCube.info.getFilter("x");
var fy: Filter = roiCube.info.getFilter("y");
var scx: Number = (fx.max - fx.min);
var scy: Number = (fy.max - fy.min);

104

myX = fx;
myY = fy;
myScX = scx;
myScY = scy;

myLayer = new Sprite3DContainer();
myLayer.name = info.name;

minL = 10000000;
maxL = 0;
minS = 10000000;
maxS = 0;

// Retrieve element offsets.
var offsX: int = cube.dataBlock.getElementOffsetByIndex(0);
var offsY: int = cube.dataBlock.getElementOffsetByIndex(1);
var offsZ: int = cube.dataBlock.getElementOffsetByIndex(2);
var offsSalt: int = cube.dataBlock.getElementOffsetByIndex(3);
var offsVX: int = cube.dataBlock.getElementOffsetByIndex(4);
var offsVY: int = cube.dataBlock.getElementOffsetByIndex(5);

for(var i: int = 0; i < cube.dataBlock.length; i++)
{

var item: Object =
{

x: cube.dataBlock.getFloat(i, offsX),
y: cube.dataBlock.getFloat(i, offsY),
z: cube.dataBlock.getFloat(i, offsZ),
salt: cube.dataBlock.getFloat(i, offsSalt),
vx: cube.dataBlock.getFloat(i, offsVX),
vy: cube.dataBlock.getFloat(i, offsVY)

};

var dataPoint: LayerDataPoint = new LayerDataPoint(
this, item.x, item.y, -item.z);

var x: Number = ((item.x - fx.min) / scx) - 0.5;
var y: Number = ((item.y - fy.max) / scy) + 0.5;

if(x >= -0.5 && x <= 0.5 && y >= -0.5 && y <= 0.5)
{

var l: Number = Math.sqrt(
item.vx * item.vx + item.vy * item.vy);

var dx: Number = item.vx / l * 0.02;
var dy: Number = item.vy / l * 0.02;

105

if(l > maxL)
{

maxL = l;
}
if(l < minL)
{

minL = l;
}

if(item.salt > maxS)
{

maxS = item.salt;
}
if(item.salt < minS)
{

minS = item.salt;
}

dataPoint.speed = l;
dataPoint.salt = item.salt;
dataPoint.vertices.push(
new Vertex3D(x, y, -item.z));

dataPoint.vertices.push(
new Vertex3D(x + dx, y + dy, -item.z));

myLayer.addSprite(dataPoint);
}

}

var ds: Number = maxL - minL;
var dsalt: Number = maxS - minS;
for each(var dp: LayerDataPoint in myLayer.billboards)
{

var w: Number = (dp.speed - minL) / ds;
var r: int = w * 255;
var g: int = 255 - r;
var b: int = 0;
dp.color = r << 16 | g << 8 | b;

w = (dp.salt - minS) / dsalt;
r = 0;
g = /*w **/ 255;
b = 255 - (w * 255);
dp.saltColor = r << 16 | g << 8 | b;

}

106

resetMetrics();
resetAlpha();
resetDrawFlags();

canvas.rootNode.addChild(myLayer);

//super.update();
return true;

}

/*
* Clear the visualization managed by this visualizer.

*/
public override function clear(): void
{

if(myLayer != null)
{

canvas.rootNode.removeChild(myLayer);
}

}

/*
* Show the visualization managed by this visualizer.

*/
public override function show(): void
{

if(myLayer != null)
{

myLayer.visible = true;
}

}

/*
* Hide the visualization managed by this visualizer.

*/
public override function hide(): void
{

if(myLayer != null)
{

myLayer.visible = false;
}

}

/*
* Called when impostor visualization has been enabled by the canavas.

*/
public override function enableImpostors(): void

107

{
// When impostors are enabled, do not draw anything.

hide();
}

/*
* Called when impostor visualization has been disabled by the canavas.

*/
public override function disableImpostors(): void
{

show();
}

/*
* Called when metrics settings have been modified.

*/
public override function resetMetrics(): Boolean
{

if(myLayer != null)
{

var roiCube: DataCube = canvas.cubes["ROI"];
var x: Filter = roiCube.info.getFilter("x");
var y: Filter = roiCube.info.getFilter("y");

var szx: Number = (x.max - x.min);
var szy: Number = (y.max - y.min);

myLayer.scaleZ =
canvas.view.computeMetric("z meters").multiplier;

myLayer.scaleX =
szx * canvas.view.computeMetric("x utm").multiplier;

myLayer.scaleY =
szy * canvas.view.computeMetric("y utm").multiplier;

}
return true;

}

/*
* Called when visualizer options have been modified.

*/
public function resetDrawFlags(): void
{

alpha = Number(info.getProperty("alpha", 1));
drawSalt = Boolean(info.getProperty("drawSalt", true));
drawCurrents = Boolean(info.getProperty("drawCurrents", true));

}

108

public var alpha: Number;
public var drawSalt: Boolean;
public var drawCurrents: Boolean;
public var minL: Number;
public var maxL: Number;
public var maxS: Number;
public var minS: Number;

}

109

.2 LayerDataPoint source

public class LayerDataPoint extends Sprite3D
{

private var myLayer: LayerVisualizer;

/*
* Class constructor.

*/
public function LayerDataPoint(
layer: LayerVisualizer, x: Number, y: Number, z: Number): void
{

myLayer = layer;
this.x = x;
this.y = y;
this.z = z;

}

/*
* Draw the datapoint managed by this LayerDataPoint instance.

*/
public override function draw(container:Sprite): void
{

var gfx: Graphics = container.graphics;

var v1: Vertex2D = vertices[0].vertex2DInstance;
var v2: Vertex2D = vertices[1].vertex2DInstance;

if(myLayer.drawCurrents)
{

gfx.lineStyle(2, color, myLayer.alpha);
gfx.moveTo(v1.x, v1.y);
gfx.lineTo(v2.x, v2.y);
gfx.moveTo(0, 0);

}
if(myLayer.drawSalt)
{

gfx.lineStyle(1, saltColor, myLayer.alpha / 2);
gfx.beginFill(saltColor, myLayer.alpha);
gfx.drawCircle(v1.x, v1.y, 3);
gfx.endFill();

}
else
{

gfx.lineStyle(1, 0xffffff, myLayer.alpha / 2);
gfx.beginFill(0xffffff, myLayer.alpha);

110

gfx.drawCircle(v1.x, v1.y, 2);
gfx.endFill();

}
gfx.lineStyle(0, 0, 0);

}

public var color: uint;
public var saltColor: uint;
public var speed: Number;
public var salt: Number;
public var x: Number;
public var y: Number;
public var z: Number;

}

111

Appendix C - Hydroviz server installation guide

This appendix provides a step-by-step guide on how to compile Hydroviz client and server source

code, and how to setup a host machine for Hydroviz server components.

.1 Requirements

In order to setup a complete hydroviz host on a Windows machine the following components are

needed:

1. A web server supporting ASP.Net application deployment. Microsoft IIS 6 server is a suggested

choice and this guide specifically targets it, but other web servers may work as well.

2. An installed database management system, like MySQL. The database and web servers can be

hosted on different machines, as long as the database host is accessible from the web server.

3. The complete Hydroviz / QbViz software package. The package contains both source code and

precompiled versions of Hydroviz and QbViz components, data conversion tools and remoting

gateway service components.

4. The Corpus Christi bay source dataset.

5. The Flash software development kit (SDK). This is not needed when using the precompiled ver-

sion of the Hydroviz client.

6. The .Net Framework SDK version 2.0 or higher. The installation of a complete C# development

environment is highly suggested. This is not needed when using the precompiled versions of

QbViz and Hydroviz server components.

In following sections, all file and directory paths will be represented as relative to the local Hydroviz

software package installation directory. For instance, if the software package is locally placed under

C:/Hydroviz the path /Client/File.as will refer to C:/Hydroviz/Client/File.as

112

.2 Software package structure

The Hydroviz / QbViz software package is divided in several folders. What follows is a brief

description of their content:

• /HeightmapGen contains the source code and binaries of the heightmap generation tool.

• /DBUpdater contains the source code and binaries of the database updater tool.

• /DBEtc contains utility files used to setup the DBMS.

• /Client contains the sources of the QbViz framework client component, and of its dependen-

cies:

– /Client/Papervision contains the sources of the Papervision library.

– /Client/QbViz contains the actual ActionScript framework source.

• /Server contains the sources of the QbViz framework server component.

• /Hydroviz contains the sources and precompiled versions of Hydroviz:

– /Hydroviz/Client contains the Hydroviz client code and the compiled .swf file.

– /Hydroviz/Server contains the Hydroviz server code and binaries.

– /www is the web application hosting root, and contains the remoting gateway service files.

.3 Compilation

.3.1 Server code

Compilation of server code is straightforward when a C# IDE, like Visual Studio 2005 or Visual C#

Express is available. It is enough to open the /BuildAll.sln solution file inside the environment, and

choose the Rebuild Solution command. Tool binaries will be put under the bin folder under their

113

respective source directory. QbViz and Hydroviz binaries (namely, QbViz.dll and Hydroviz.dll)

will be automatically deployed in the web application binaries folder (/www/bin).

.3.2 Client Code

To compile the Hydroviz client code it is usually enough to slightly modify and run the batch file

/Hydroviz/Client/Build.bat. The modification of the batch file consists in setting the MXMLC

variable to point to the local flash compiler mxmlc.exe. For instance, if the Flash SDK is installed

under C:/Flash the variable should be set to C:/Flash/bin/mxmlc.exe. A succesfull compilation

will generate the executable flash file Main.swf and place it under /www/Hydroviz.

.4 Preprocessing data

After setting up a database system, the proper dataset and tables must be created and filled with

processed source data. The DBEtc folder contains a sql script containing the necessary commands to

setup the empty tables. How to run this script on a specific DBMS installation depends on the DBMS

software itself. Database systems usually offer a SQL console or management user interface that will

guide he user in this task.

Once the tables have been set up, they can be filled with data, using the DBUpdater tool. The tool

syntax is:

DBUpdater <dataRoot> <outputDir> <DBMSaddr> <DBMSuser> <DBMSpswd>

where:

• dataRoot is the path to the directory where source data text files are stored.

• outputDir is the path to the directory where output files generated by the tool will be placed.

• DBMSaddr is the network address of the DBMS service, in the form <IPAddress>:<port>.

114

• DBMSuser is the name of a user with at least write privileges on the hydroviz dataset tables.

• DBMSpwd is the password for the user specified on previous point.

The HeightmapGen tool can be used to generate a heightmap image from source bathymetry data.

Running this tool is not strictly necessary, since a pre-generated heightmap image is already placed in

/www/hydroviz. The tool has the following syntax:

HeightmapGen <dataRoot> <imgDest>

where:

• dataRoot is the path to the directory where source data text files are stored.

• imgDest is destination path of generated image.

.5 Web server setup

Setting the web server to host the hydroviz application consists in the following two operations (a

IIS 6 server installation is assumed):

1. Creating a new web site: this can be done selecting the "‘Web Sites"’ item in the left pane and

choosing "‘New Website"’ from the context menu options as shown in figure 39. Server name

and root directory can be freely defined by the user.

2. Adding a virtual application to the web site: done by selecting the newly created site and choos-

ing the "‘New application"’ from the context menu. The application root must be set to the /www

directory of the Hydroviz software package.

The last step consists in setting up the application configuration file,

/www/hydroviz/config.xml. This file contains the address, user name and password that should

115

39. Hosting a web application on IIS.

be user by the hydroviz service to access data on the DBMS. The same values used for running the

DBUpdater tool can be specified.

After this step, the application is completely setup, and ready to be used. As an example, if the

website name specified in web server setup is MySite and the virtual application name is MyApp, the

hydroviz web application will be accessible at:

http://machineURL/MySite/MyApp/hydroviz/iindex.html.

BIBLIOGRAPHY

1. Francis T. Marchese, Jude Mercado, and Yi Pan: Adapting Single-User Visualization Software for
Collaborative Use. Proceedings of the Seventh International Conference on Information
Visualization (IV’03), 2003.

2. Pilar Herrero, and Angelica de Antonio: A Formal Awareness Model for 3D Web-based Collabora-
tive Environments, SIGGROUP Bulletin, Vol 21, No.3, December 2000.

3. Rainer C. Splechtna, Anton L. Fuhrmann, and Rainer Wegenkittl: ARAS - Augmented Reality Aided
Surgery System Description, http://www.vrvis.at/br1/aras/.

4. Jason Wood: COVISA, Collaborative Visualization and Scientific Analysis, Proceedings of
Visualization, doi.ieeecomputersociety.org, 1996

5. Jason Wood, Helen Wright, and Ken Brodlie: CSCV - Computer Supported Collaborative Visualiza-
tion, 1995

6. Alex Pang, Craig M. Wittenbrink, and Tom Goodman: CSpray: A Collaborative Scientific Visualiza-
tion Application

7. G. Feichtinger, G. Fischel, E. Gröller, and A. Prskawetz: Despotism and Anarchy in Ancient China:
Visualizing the Dynastic Cycle. Jahrbuch,Wirtschaftswissenschaften 47/1, Vandenhoeck &
Ruprecht, 1-13, 1996.

8. Simon Su, R. Bowen Loftin, David T. Chen, Yung-Chin Fang, and Ching-Yao Lin: Distributed Col-
laborative Virtual Environment: PaulingWorld

9. Frank J. Post, Theo van Walsum, Frits H. Post, and Deborah Silver: Iconic techniques for feature
visualization, Proceedings Visualization ’95, IEEE Computer Society, 1995.

10. Thomas Nocke, Stefan Schlechtweg, and Heidrun Schumann: Icon-based visualization using mo-
saic metaphors, IEEE Information Visualization (IV’05), London, 2005

11. Millward Brown: Flash Player Penetration: Market Research,
http://www.adobe.com/products/player_census/flashplayer/

12. Steve Casera, Hans-Heinrich Nägeli, and Peter Kropf: Improving Usability of Collaborative Visu-
alization Systems, http://iiun.unine.ch/paral/zoomin, 2001

13. Russel M., and Taylor H.: Practical Scientific Visualization Examples, Computer Graphics, Vol. 34,
No. 1., February 2000

116

BIBLIOGRAPHY (Continued) 117

14. Ken Brodlie, Jason Wood, and Helen Wright: Scientific Visualization: Some Novel Approaches to
Learning, http://www.comp.leeds.ac.uk/vis/covisa/covisa.html

15. Alex Pang, and Kyle Smith: Spray rendering: Visualization using smart particles, Proceedings
Visualization ’93, pages 283-290, 1993.

16. Concurrent System Laboratory, University of California, Santa Cruz, USA: Spray and the REINAS
Project, http://csl.cse.ucsc.edu/projects/reinas/

17. W. Schroeder, K. Martin, and B. Lorensen: The visualization toolkit: an object-oriented approach to
3D graphics, Prentice Hall, ISBN 0-13-199837-4, 1996

18. William J. Schroeder, Kenneth M. Martin, and William E. Lorensen: The design and implementation
of an object-oriented toolkit for 3d graphics and visualization, Proceedings Visualization ’96.
IEEE Computer Society, 1996

19. Will Schroeder, Ken Martin, and Bill Lorensen: The Visualization Toolkit, An Object-Oriented
Approach to 3D Graphics, Prentice Hall, 1996.

20. Hervé Sanglard: Towards an Easy-to-learn and Extensible Platform for Scientific Visualization. PhD
Thesis, University of Neuchâtel, Switzerland. 2001

21. Robert B. Haber, and David A. McNabb: Visualization idioms: A conceptual model for scientific
visualization systems, Visualization in Scientific Computing. IEEE Computer Society Press,
1990.

22. T. J. Jankun Kelly: Visualizing Visualization: A Model and Framework for Visualization Explo-
ration. PhD Thesis, University of California, Davis, 2003

23. Bahari Belaton, and Ken Brodlie: Model Centred Approach to Scientific Visualization, Journal of
WSCG, 10(1), 2002

24. Bianchi Serique Meiguins, Rosevaldo Dias de Souza Júnior, Marcelo de Brito Garcia, and
Aruanda Simões Gonçalves: Web-Based Collaborative 3D Information Visualization Tool,
Proceedings of the Eighth International Conference on Information Visualisation (IV’04),
2004.

25. Ed Huai-hsin Chi, and John T. Riedl: An Operator Interaction Framework for Visualization Sys-
tems, 1998.

26. Andy Cedilnik, Berk Geveci, Kenneth Moreland, James Ahrens, and Jean Favre: Remote Large Data
Visualization in the ParaView Framework, Eurographics Symposium on Parallel Graphics
and Visualization, 2006.

27. Anton L. Fuhrmann: Scientific Visualization in Virtual Reality, ÖGAI Journal 21/1.

BIBLIOGRAPHY (Continued) 118

28. Zihiong Gao: Extending Scientific Visualization into the World Wide Web, Dalhouse University,
Halifax, Nova Scotia, 1998.

29. Advanced Visual Systems Inc., Waltham, MA, USA: AVS, http://www.avs.com.

30. International Business Machine Inc., USA: Data Explorer, http://www.almaden.ibm.com/dx/.

31. The Numerical Algorithms Group Ltd., Oxford, UK: Iris Explorer, http://www.nag.co.uk.

32. Wolfram Research: Mathematica, http://www.wolfram.com/products/mathematica/index.html.

33. Adobe Systems Inc., San Jose, California, USA: Adobe Flash,
http://en.wikipedia.org/wiki/Adobe_Flash.

34. Adobe Systems Inc., San Jose, California, USA: ActionScript 3.0 Language and Components Refer-
ence, http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/.

35. Adobe Systems Inc., San Jose, California, USA: Adobe Shockwave,
http://en.wikipedia.org/wiki/Adobe_Shockwave

36. Adobe Systems Inc., San Jose, California, USA: Flex 3 Framework,
http://www.adobe.com/products/flex/

37. Adobe Systems Inc., San Jose, California, USA: AMF3 Format Specification,
http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf.

38. Microsoft Corporation, Redmond, Washington, USA: Silverlight, http://silverlight.net/.

39. Midnight Coders, Frisco, Texas, USA: WebOrb, Universal Connectivity Between AJAX, Flash, Flex
Clients and .Net, Java Web Servers, http://www.themidnightcoders.com/weborb/.

40. Heightmap, http://en.wikipedia.org/wiki/Heightmap.

41. JOGL: Java bindings for OpenGL API with OpenGL 1.5 specification, https://jogl.dev.java.net/.

42. OpenGL, http://en.wikipedia.org/wiki/OpenGL.

43. JavaScript Language Specification, http://www.noc.garr.it/docum/jsspec.pdf.

44. Hypercosm, http://www.hypercosm.com/.

45. VirTools, http://www.virtools.com/.

119

46. Lingo, http://en.wikipedia.org/wiki/Lingo_(programming_language).

47. X3D Format Specification, http://www.web3d.org/x3d/specifications/x3d_specification.html.

48. The Java Virtual Machine Specification,
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html.

49. The MathWorks: Matlab and SIMULINK for technical computation,
http://www.mathworks.com/.

50. Rendering(Computer Graphics), http://en.wikipedia.org/wiki/Rendering_(computer_graphics).

51. Virtual Reality, http://en.wikipedia.org/wiki/Virtual_reality.

52. Papervision 3D, http://code.google.com/p/papervision3d/.

53. Fluorine, an Open Source Flash Remoting Gateway,
http://fluorine.thesilentgroup.com/fluorine/index.html.

54. Swing, http://en.wikipedia.org/wiki/Swing_(Java).

55. Abstract Window Toolkit, http://en.wikipedia.org/wiki/Abstract_Window_Toolkit.

56. Painter’s Algorithm, http://en.wikipedia.org/wiki/Painter’s_algorithm.

57. Z-Buffering, http://en.wikipedia.org/wiki/Z-buffering.

FIGURES

120

121

40. Depth slices

41. Streamlines

122

42. Mixed streamline and datapoint layer visualization

43. Mixed streamline and datapoint layer visualization

123

44
.a

sc
re

en
sh

ot
of

th
e

H
yd

ro
vi

z
ap

pl
ic

at
io

n
sh

ow
in

g
th

e
ba

y
m

od
el

an
d

tw
o

ac
ti

ve
da

ta
la

ye
rs

124

45
.s

cr
ee

ns
ho

tv
is

ua
liz

in
g

a
da

ta
la

ye
r,

st
re

am
lin

es
an

d
a

ge
o-

re
fe

re
nc

ed
an

no
ta

ti
on

125

46
.B

eh
av

io
r

of
st

re
am

lin
es

st
ar

ti
ng

fr
om

th
e

sa
m

e
po

in
ta

td
iff

er
en

td
ep

th
s

126

47
.S

tr
ea

m
lin

es
st

ar
ti

ng
fr

om
si

gn
ifi

ca
ti

ve
po

in
ts

sh
ow

th
e

di
ve

rg
en

ce
of

di
ff

er
en

tc
ur

re
nt

flo
w

s

127

48
.A

nn
ot

at
ed

de
pt

h
sl

ic
es

VITA

NAME: Alessandro Febretti

EDUCATION: B.S., Politecnico di Milano, Milan, Italy, 2005

128

