
The OmegaDesk: Towards A Hybrid 2D & 3D Work

Desk

Alessandro Febretti, Victor A. Mateevitsi, Dennis Chau, Arthur Nishimoto, Brad

McGinnis, Jakub Misterka, Andrew Johnson, Jason Leigh

Electronic Visualization laboratory, University of Illinois at Chicago

Abstract. OmegaDesk is a device that allows for seamless interaction between

2D and 3D content. In order to develop this hybrid device, a new form of Oper-

ating System is needed to manage and display heterogeneous content. In this

paper we address the hardware and software requirements for such a system, as

well as challenges. A set of heterogeneous applications has been successfully

developed on OmegaDesk. They allowed us to develop a set of guidelines to

drive future investigations into 2D/3D hybridized viewing and interaction.

1 Introduction

Fig. 1. This figure illustrates the initial concept of OmegaDesk as envisioned in 1999.

Historically, Virtual Reality (VR) systems have been thought of entirely for

 the purposes of supporting virtual world interactions. In 1999 the Elec-

tronic Visualization Laboratory (EVL) conceived of a new type of work desk that

would blend 2D and 3D display and interaction capabilities to enable users to work

seamlessly with 2D content (such as text documents and web browsers), as well as 3D

content (such as 3D geometry and volume visualizations). We believed that for VR to

emerge out of a small niche community, it had to become a seamless part of the com-

puting continuum. At the time, the state of the art in hardware did not make

such a conceived system practical. However today minimally encumbering

and reliable stereoscopic displays and tetherless tracking systems are becoming

highly affordable. Also, numerous vendors are emerging to provide multi-touch

 overlays that are easy to incorporate into existing display systems.

It is therefore possible now to develop our hybrid 2D/3D work desk, which

we call OmegaDesk. What is still missing however is a new form of Operating System

that enables the effortless and intuitive manipulation of both 2D content (such as

spreadsheets, word processing documents, web browsers) and 3D content (such as

CAD or scientific visualizations). In this paper we report on our first steps toward

addressing this problem which resulted in the development of an API and exemplary

applications for examining issues relating to 2D/3D hybridized viewing and interac-

tion.

1.1 Vision

The effectiveness of presenting data in different modalities has been the subject of

previous research. 2D views have been found to be better when used to establish pre-

cise relationships between data, and for visual search [1] and [2], while 3D is very

effective for approximate 3D manipulation and navigation, especially with the use of

appropriate cues, like shadows. In [3] it is suggested that combining both views leads

to good or better analysis and navigation performance than using 2D or 3D alone.

These findings are confirmed in [4], where in an air traffic control simulation 2D

displays proved to be better for checking aircraft speed and altitudes while 3D was

best used to perform collision avoidance.

Our vision for OmegaDesk is of an integrated hardware and software system that

allows for rapid development and deployment of tools that make use of this hybrid

visualization capability. Also, we envision OmegaDesk not specifically as a VR de-

vice or a Workstation, but a Work Desk - i.e. computer-enhanced furniture. Applica-

tive scenarios range from scientific visualization of complex scientific datasets, ([5],

[6]), interaction with dynamic geospatial information (e.g. air traffic control, [4]),

analysis of medical data for research or surgery planning ([7] , [8]), and in general

scenarios where a 3D, qualitative display of information can be enriched by a separate

or overlayed 2D, quantitative view of the same information.

We will first describe the implementation of the OmegaDesk, and the middleware

to drive it. Along the way we will describe some of the challenging issues we have

encountered in building the system. Then we will describe the applications that we

have built to test the system, and the lessons learned. Lastly we will conclude with an

evaluation of developed case studies and our plans for future investigation and devel-

opment of the system.

2 Related Work

Considered as a purely hardware system, the OmegaDesk structure is comparable to

other designs. The sliceWIM system presented in [5] offers two separate views of the

data, with interaction done exclusively through a touch interface. While effective, the

system has been designed around a very specific task (exploration of volume datasets)

and while it supports an overview and detail view of the data, it is not really designed

to support the overlapping of 3D and 2D information. The IQ-Station [9] is a low cost

immersive system based on a 3D display and a set of OptiTrack motion capture cam-

eras. Although there are some technical similarities between the IQ-Station and the

OmegaDesk, the former focuses less on the hybrid 2D and 3D aspect that is central in

our design.

In the introduction we also stated how OmegaDesk needed an operating system or

middleware that would enable the development of applications on a hybrid 2D/3D

system. This middleware would allow for both high performance scientific visualiza-

tion and interaction with higher level, rapid development toolsets. This gives applica-

tion programmers the ability to rapidly develop on platforms such as Unity3D and

Processing. Additionally it was also important that there was a layer of abstraction

between input devices and the developer.

A variety of libraries (as trackD and Vrpn) offer an abstraction layer to handle vir-

tual reality input devices. Others, like freeVR and the Vrui toolkit take this a step

further, integrating display management for 3D rendering. Products like getReal3D

allow users to design virtual reality environments using of high level toolsets (Unity in

this case).

3 OmegaDesk Hardware

The OmegaDesk concept is illustrated in Fig. 2. OmegaDesk consists of two stereo

displays, one positioned horizontally in a 45-degree angle and another positioned

vertically in front of the user. The PC that drives the displays is a Windows 7 64bit

machine on an Intel Core2 2.93GHZ with 4GB of RAM and two NVIDIA GeForce

GTX 480 GPU cards. For OmegaDesk two Panasonic Viera TC-P65VT25 have been

used.

 The use of commercially available displays allows the flexibility of using any high-

resolution 3D consumer display system and enables the low cost construction of such

work-desks. While the cost of high-resolution 3D displays has dropped significantly in

the past 5 years, it is our belief that it will drop further, making it affordable to build

future OmegaDesk-like work desks.

Fig. 2. This figure shows the various commercial technologies that make up OmegaDesk.

Table 1. Operational modes of OmegaDesk

Operational Mode Potential Application Usage

Top 3D, Bottom 3D Fully immersive mode. Ideal for applications that

require navigation thru a virtual space or bringing 3D

objects close-up for manipulations, etc.

Top 3D, Bottom 2D 3D Viewer mode. The vertical display is used to

visualize 3D objects and worlds, while the horizontal

display can be used to control aspects of the visuali-

zation.

Top 2D, Bottom 3D ‘Bathtub’ mode. The horizontal display is used to

look at 3D data bottom-down, like looking at a fish

tank from top and the vertical display is used to look

at 2D projections or slices of the data.

Top 2D, Bottom 2D Touch augmented desktop / cubicle mode. The verti-

cal display is the wall of the cubicle while the hori-

zontal display is like a giant iPad where document

editing and manipulation can be performed.

3.1 Input Interfaces

For manipulation of objects in 2D the bottom display is overlayed with the Multi-

Touch G
3
 Plus overlay manufactured by PQLabs that can detect simultaneously up to

32 touches. For head tracking and 3D object manipulation OmegaDesk can use either

the five OptiTrack FLEX:V100R2-FS positioned around OmegaDesk or a Microsoft

Kinect. Kinect user tracking is performed through the OpenNI library. While Kinect

can perform tether-less multi-body tracking, it lacks the accuracy of OptiTrack and

does not provide orientation for all the tracked body parts. On the other hand the cov-

erage area of OptiTrack is reduced in comparison with the Kinect’s (Fig. 3).

Fig. 3. This diagram shows the area of coverage of both the Optitrack and the Kinect.

Immersive navigation is accomplished with the use of game controllers. With the

wide adoption of game consoles like the Wii, Xbox 360 and PlayStation 3 users are

accustomed to navigate worlds using a game console. Both the PlayStation 3 and

Xbox 360 wireless controllers can be used as props when developing applications for

OmegaDesk.

4 Omegalib

The final software development objective for OmegaDesk would be the creation of a

2D-3D-aware Operating System. A first step towards that objective is the implementa-

tion of a middleware system that would ease the development of applications on hy-

brid work desks, and increase their portability across hardware changes or device

configurations. We explained how none of the existing libraries was covering our full

set of requirements in an easy, out-of-the-box way. This led us to build our own soft-

ware development kit, called Omegalib.

Fig. 4. This diagram shows the overall outline of the Omegalib architecture.

4.1 Hardware abstraction

Inside Omegalib, hardware abstraction is implemented through two concepts: display

system abstraction and input system abstraction.

Display system abstraction. Omegalib manages rendering using the concept of dis-

play systems: A display system takes care of setting up the graphical hardware system,

creating windows and viewports, setting up transformations and rendering pipelines

and calling the appropriate application-level rendering functions. Currently, two dis-

play systems have been implemented: a simple GLUT based display system used

mainly for debug purposes, and an Equalizer based display system.

Equalizer is a toolkit for scalable parallel rendering based on OpenGL. It allows

users to develop scalable graphics applications for a wide range of systems ranging

from large distributed visualization clusters and multi-processor multipipe graphics

systems to single-processor single-pipe desktop machines [10]. In the near future, we

are considering the introduction of a new display system to support autostereoscopic

displays based on active parallax barriers, like the Dynallax [11].

The separation between rendering management and the actual application rendering

code allowed us to support the concept of rendering layers. Layers represent concep-

tually separate sets of graphical primitives (for instance a 3D scene and a 2D inter-

face) that can be enabled or disabled for specific output channels of the display sys-

tem. In this way, it is very easy to implement separate 3D views for the same applica-

tion, or create a management window running on a secondary display, showing an

administration UI or a debug-mode scene rendering.

It is also possible to perform rendering of layers on separate threads, and compose

them in the target channel frame buffer: this can be used to make the rendering per-

formance of 2D elements of the application independent from the complexity of the

3D scene, in order to maintain a good frame rate and responsiveness on the UI as the

visualized scene grows in complexity.

Input device abstraction. Omegalib gives applications access to input devices

through the concept of event services: an event service manages one physical or logi-

cal event source in the system. For instance it can:

 offer access to events from a real input device, like a touch display or a mo-

tion capture system;

 receive events from a remote source through a network connection;

 generate input from a logical source, like a user interface button or slider;

 process events from other sources to act as a background utility service. For

example, a service can get position data for the user head from a tracking

or motion capture service, update the observer head matrices for a scene

and send the application updates on the user tracking status).

Event services allow for a great deal of flexibility. They abstract the physical input

devices available to the system. Also, they allow to modularize several common com-

ponents of a virtual reality application (like user tracking or network message pass-

ing), so that they can easily be reused in applications.

Omegalib also supports the streaming of events to external applications, acting as a

display-less input server. This simplifies the development of OmegaDesk applications

using differents toolsets (as Unity or Processing) and streamlines the integration of

input support into legacy applications that treat the device displays as normal screens,

but want to use the motion capture, tracking or multitouch capabilities of OmegaDesk.

Configuration. Similar to other VR libraries, Omegalib allows applications to be

reconfigured using system description files: display system, event service and applica-

tion parameters are all stored in configuration files: the same application can run on

OmegaDesk with head and hand tracking, on a multitouch tiled display without stereo

support, or on a developer laptop using just mouse and keyboard interaction.

4.2 Interaction

Through use of tracker based mocap, Kinect user tracking and touch screens

OmegaDesk offers a wide range of possibilities in terms of user interaction. Different

applications may request subsets of the available input devices and implement an

interaction scheme that works best for the specific application scenario: in some in-

stances, the motion capture system may be used just for head tracking, while interac-

tion with the application 3D objects can be realized through the touch screen. In other

scenarios we may need a full mocap-based interaction scheme, with direct hand ma-

nipulation of the 3D objects.

We think a certain, predefined number of interaction metaphors would satisfy most

of the interaction needs of final applications. In this case, it makes sense to modularize

them and make them available to application developers as packaged interaction

schemes that can be easily turned on, off or switched inside an application, allowing

for both consistency and reuse of interaction schemes, and fast prototyping of applica-

tions using different interaction techniques. To implement this, omegalib offers sup-

port for a simple scene graph system based on Ogre that can be controlled through

interaction objects. These objects implement interaction policies, by getting input

from the event services and controlling nodes and objects in the scene graph.

4.3 Integration with Scientific Visualization tools.

One of the purposes of OmegaDesk is to be used as a scientific visualization tool: it is

therefore necessary to integrate it with standard tools and libraries, like the Visualiza-

tion Toolkit (VTK) [12]. Through Omegalib, Omegadesk is able to load VTK pipe-

lines as python scripts, render them through the omegalib display system and interact

with VTK actors and 3D models using the interaction schemes presented in the previ-

ous section. VTK python scripts can also create user interface widgets that modify the

visualization pipeline, and can be controlled through the touch screen. It is also possi-

ble to create VTK programs for OmegaDesk natively, using the C++ VTK API direct-

ly. This makes it extremely easy to build VTK programs for OmegaDesk or port lega-

cy pipelines to the system.

Fig. 5. The integration of VTK pipelines inside Omegalib is done through a support module

that performs VTK actor encapsulation and feeds back user actions to the pipeline.

5 Application Case Studies

A set of heterogeneous application has been developed on OmegaDesk so far. Some

are built to test the interaction and display capabilities of the system while others are

designed to solve domain-specific problems in areas as different as rehabilitation

therapy, histology or fluid dynamics.

5.1 Mesh Viewer / VTK Viewer

The mesh viewer application has been developed to test 3D object manipulation via

hand gestures. It allows the user to drop one or more objects inside a 3D scene by

selecting them through the touch display. Interaction takes place using both hands to

intuitively perform rotation, scaling and moving. Head and hand tracking can be pro-

vided by the Optitrack system or the Kinect alone.

The VTK viewer application takes the mesh viewer concept a step further: it sup-

ports loading of VTK pipelines through python scripts and rendering of multiple VTK

actors. These actors can then be manipulated using the same interaction techniques

offered by the mesh viewer. Additionally, selected parameters of the VTK pipeline

can be configured at runtime though a touch interface created dynamically on the

bottom display.

5.2 Physical Therapy Simulation

The Physical Therapy Simulation is a rehabilitation exercise created using Unity3D

and Omegalib through a collaborative effort with the Kinesiology department at UIC.

It is used to test the efficacy of physical therapy through the use of VR. The scene

consists of a simple room where a virtual ball is tossed to the patient. This has the

effect of strengthening feedforward postural control in the user/patient which allows

for maintaining a quality of balance during daily movements.

This application will help determine if visual stereoscopy will provide enough vis-

ual cues to the brain to enhance current physical therapy methods. It utilizes Omega-

lib's data streaming capability from an OptiTrack motion capture system and Kinect.

5.3 Histology Viewer

With the development of powerful microscope optics and the latest advances in image

sensors that deliver high resolution imaging capabilities, the scientists are able to

dwell into the micro and nano scale to explore sightings unseen under normal condi-

tions by the naked eye. In particular, in the medical lasers research field, physicians

study 1cm by 0.5cm blocks of laser damaged skin. Using specialized hardware the

block is sliced in 4 microns thick slices and digitized by the use of a powerful micro-

scope equipped with a medical imaging device. Typically the physicians use a stand-

ard image viewer to browse through the histology images and identify the damaged

parts.

To leverage the OmegaDesk capabilities, a prototype Histology Viewer was devel-

oped. The skin block is reconstructed by stacking the slices and using ray-casting

algorithms to generate a data volume. The top display visualizes the 3D reconstruction

and gives physicians the ability to look at the data with an high level of detail. The

bottom multi-touch display controls the visualization and is used to select what slices

of the block will be shown. The physicians can browse back and forth through the data

by touching and sliding and also select slices of interest to investigate further. Zoom-

ing and rotating are also supported by the pinching and rotating gestures.

5.4 Flow Visualization

FlowViz is a generic 3D flow visualization for Omega Desk, The application has been

built using Processing, and has been designed to be easily portable to devices offering

a subset of the capabilities of OmegaDesk The goal of the project was to create a tool

that would enable the viewer to better understand the complex nature of flow data. It

is thought that viewing the complex 3D flow in a native 3D environment will allow

the viewer to better understand its behavior. Also, by utilizing the multi-touch inter-

face the viewer is allowed to interact with the simulation in an intuitive way: users can

touch a 2D representation of the 3D view, causing a stream source to be spawned from

the point touched. This source can either be a dynamic particle generator or a static

streamline. Particles will flow through the vector field, exposing its behavior. In

addition the user may spawn multiple plot windows showing different representations

of the model. Users can brush over and select portions which outline corresponding

regions of the 3D data.

6 Evaluation and Future Work

This paper presented OmegaDesk, a prototype 2D and 3D work desk. We described

the requirements for such a system to be effective, and how we addressed them at the

software and hardware level. The development of several heterogeneous applications

on the system allowed us to assess its efficacy in very different domains.

The presented applications made use of different device modalities. The mesh

viewer used both displays as 3D viewports to create a more immersive experience,

overlaying a 2D user interface on the touch-enabled screen, and used hand gestures to

interact with the data. The histology and flow visualizations treated the bottom screen

as a 2D data presentation display, with the entire interaction driven by the touch sur-

face (no hand gestures). Finally, the physical therapy simulation made use of the top

3D screen only. In this case the interaction was based on hand and head tracking,

without the need for touch support. Even the current set of applications does not cover

all of the possible OmegaDesk configurations, it allowed us to develop an initial set of

considerations and guidelines for future development on this platform.

It is clear how 3D hand gestures can be used for approximate object manipulation,

or for applications that don’t need precise control. In these instances they can be a

very effective and intuitive way of interacting with the system. When more control is

needed though, the power and precise control offered by a touch screen and a 2D or

2.5D interface is unmatched. In this case, it is very important to link the information

displayed on the 2D and 3D portions of the application, so that changes in one view of

the data influence all the others. These changes should be propagated as quickly as

possible and, most importantly, each view of the data should be able to update itself

on the displays, without depending on the refresh speed of other views. This is similar

in concept to the separation of processes running in an operating system: even if they

can exchange data with each other, none of them should be allowed to slow down the

entire system.

Our future work will involve not only building new applications leveraging

OmegaDesk capabilities, but also continuing the development of omegalib, to make it

a complete, Operating System – like middleware supporting complex multimodal

development on our evolving hardware system.

Pictures

Fig. 6. Photos of several applications running on OmegaDesk. (a) User interaction with 2D

graphs of water flow in a specific area in Corpus Christi Bay as he compares them to the vector

field of the surrounding areas. (b) Reviewing 2D histology slides while comparing them to the

3D volume rendering. (c) A user rotating and translation an object within the mesh viewer. (d)

A user using OmegaDesk to simulate catching a ball as part of physical therapy.

Acknowledgements

This publication is based on work supported in part by Award Nos. FA7014-09-2-

0003, FA7014-09-2-0002, made by the US Air Force, and Award CNS-0935919,

made by the National Science Foundation.

(a) (b)

(c) (d)

References

1. Smallman, H.S., St John, M., Oonk, H.M., Cowen, M.B.: Information availa-

bility in 2D and 3D displays. Computer Graphics and Applications, IEEE. 21,

51-57 (2001).

2. Springmeyer, R.R., Blattner, M.M., Max, N.L.: A characterization of the sci-

entific data analysis process. Visualization, 1992. Visualization '92, Proceed-

ings., IEEE Conference on. pp. 235-242 (1992).

3. Tory, M., Kirkpatrick, A., Atkins, M., Moller, T.: Visualization task perfor-

mance with 2D, 3D, and combination displays. IEEE transactions on visuali-

zation and computer graphics. 12, 2-13 (2006).

4. Van Orden, K., Broyles, J.: Visuospatial task performance as a function of

two- and three-dimensional display presentation techniques. Displays. 21, 17-

24 (2000).

5. Coffey, D., Malbraaten, N., Le, T., Borazjani, I., Sotiropoulos, F., Keefe,

D.F.: Slice WIM: a multi-surface, multi-touch interface for overview+detail

exploration of volume datasets in virtual reality. I3D '11: Symposium on In-

teractive 3D Graphics and Games. (2011).

6. Kreylos, O., Bethel, E.W., Ligocki, T.J., Hamann, B.: Virtual-Reality Based

Interactive Exploration of Multiresolution Data. Presented at the.

7. Hemminger, B.M., Molina, P.L., Egan, T.M., Detterbeck, F.C., Muller, K.E.,

Coffey, C.S., Lee, J.K.T.: Assessment of real-time 3D visualization for cardio-

thoracic diagnostic evaluation and surgery planning. J Digit Imaging. 18, 145-

153 (2005).

8. Pechlivanis, I., Schmieder, K., Scholz, M., König, M.: 3-Dimensional com-

puted tomographic angiography for use of surgery planning in patients with

intracranial aneurysms. Acta …. (2005).

9. Sherman, W.R., O'Leary, P., Whiting, E.T., Grover, S., Wernert, E.A.: IQ-

Station: a low cost portable immersive environment. ISVC'10: Proceedings of

the 6th international conference on Advances in visual computing. Springer-

Verlag (2010).

10. Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: A Scalable Parallel

Rendering Framework. Visualization and Computer Graphics, IEEE Transac-

tions on. 15, 436-452 (2009).

11. Peterka, T., Kooima, R., Sandin, D., Johnson, A., Leigh, J., DeFanti, T.: Ad-

vances in the Dynallax Solid-State Dynamic Parallax Barrier Autostereoscop-

ic Visualization Display System. IEEE transactions on visualization and com-

puter graphics. 14, 487-499 (2008).

12. Schroeder, W.J., Avila, L.S., Hoffman, W.: Visualizing with VTK: A Tutori-

al. IEEE. 1-8 (2000).

