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Abstract. OmegaDesk is a device that allows for seamless interaction between 

2D and 3D content. In order to develop this hybrid device, a new form of Oper-

ating System is needed to manage and display heterogeneous content. In this 

paper we address the hardware and software requirements for such a system, as 

well as challenges. A set of heterogeneous applications has been successfully 

developed on OmegaDesk. They allowed us to develop a set of guidelines to 

drive future investigations into 2D/3D hybridized viewing and interaction. 

1   Introduction 

 

Fig. 1. This figure illustrates the initial concept of OmegaDesk as envisioned in 1999. 

Historically, Virtual   Reality   (VR) systems   have   been   thought   of   entirely   for 

  the   purposes   of   supporting   virtual   world   interactions.   In   1999   the   Elec-

tronic   Visualization   Laboratory   (EVL) conceived of a new type of work desk that 

would blend 2D and 3D display and interaction capabilities to enable users to work 



seamlessly with 2D content (such as text documents and web browsers), as well as 3D 

content (such as 3D geometry and volume visualizations). We believed that for VR to 

emerge out of a small niche community, it had to become a seamless part of the com-

puting continuum. At   the   time,   the state of the art in   hardware   did   not   make   

such   a   conceived   system   practical.        However   today minimally encumbering 

and reliable stereoscopic   displays and tetherless tracking systems are becoming   

highly   affordable.  Also,  numerous vendors are emerging to provide multi-touch 

 overlays  that  are  easy  to  incorporate  into  existing display   systems. 

It is therefore possible now   to   develop   our hybrid   2D/3D   work desk,  which 

we call OmegaDesk. What is still missing however is a new form of Operating System 

that enables the effortless and intuitive manipulation of both 2D content (such as 

spreadsheets, word processing documents, web browsers) and 3D   content (such as 

CAD or scientific visualizations). In this paper we report on our first steps toward 

addressing this problem which resulted in the development of an API and exemplary 

applications for examining issues relating to 2D/3D hybridized viewing and interac-

tion. 

1.1 Vision 

The effectiveness of presenting data in different modalities has been the subject of 

previous research. 2D views have been found to be better when used to establish pre-

cise relationships between data, and for visual search [1] and [2], while 3D is very 

effective for approximate 3D manipulation and navigation, especially with the use of 

appropriate cues, like shadows. In [3] it is suggested that combining both views leads 

to good or better analysis and navigation performance than using 2D or 3D alone. 

These findings are confirmed in [4], where in an air traffic control  simulation 2D 

displays proved to be better for checking aircraft speed and altitudes while 3D was 

best used to perform collision avoidance. 

Our vision for OmegaDesk is of an integrated hardware and software system that 

allows for rapid development and deployment of tools that make use of this hybrid 

visualization capability. Also, we envision OmegaDesk not specifically as a VR de-

vice or a Workstation, but a Work Desk -  i.e. computer-enhanced furniture. Applica-

tive scenarios range from scientific visualization of complex scientific datasets, ([5], 

[6] ), interaction with dynamic geospatial information (e.g. air traffic control, [4]), 

analysis of medical data for research or surgery planning ( [7] , [8]), and in general 

scenarios where a 3D, qualitative display of information can be enriched by a separate 

or overlayed 2D, quantitative view of the same information. 

 

We will first describe the implementation of the OmegaDesk, and the middleware 

to drive it. Along the way we will describe some of the challenging issues we have 

encountered in building the system. Then we will describe the applications that we 

have built to test the system, and the lessons learned. Lastly we will conclude with an 

evaluation of developed case studies and our plans for future investigation and devel-

opment of the system. 



2   Related Work 

 

Considered as a purely hardware system, the OmegaDesk structure is comparable to 

other designs. The sliceWIM system presented in [5] offers two separate views of the 

data, with interaction done exclusively through a touch interface. While effective, the 

system has been designed around a very specific task (exploration of volume datasets) 

and while it supports an overview and detail view of the data, it is not really designed 

to support the overlapping of 3D and 2D information. The IQ-Station [9] is a low cost 

immersive system based on a 3D display and a set of OptiTrack motion capture cam-

eras. Although there are some technical similarities between the IQ-Station and the 

OmegaDesk, the former focuses less on the hybrid 2D and 3D aspect that is central in 

our design. 

In the introduction we also stated how OmegaDesk needed an operating system or 

middleware that would enable the development of applications on a hybrid 2D/3D 

system.  This middleware would allow for both high performance scientific visualiza-

tion and interaction with higher level, rapid development toolsets. This gives applica-

tion programmers the ability to rapidly develop on platforms such as Unity3D and 

Processing.  Additionally it was also important that there was a layer of abstraction 

between input devices and the developer.  

A variety of libraries (as trackD and Vrpn) offer an abstraction layer to handle vir-

tual reality input devices. Others, like freeVR and the Vrui toolkit take this a step 

further, integrating display management for 3D rendering. Products like getReal3D 

allow users to design virtual reality environments using of high level toolsets (Unity in 

this case).  

3   OmegaDesk Hardware 

The OmegaDesk concept is illustrated in Fig. 2. OmegaDesk consists of two stereo 

displays, one positioned horizontally in a 45-degree angle and another positioned 

vertically in front of the user. The PC that drives the displays is a Windows 7 64bit 

machine on an Intel Core2 2.93GHZ with 4GB of RAM and two NVIDIA GeForce 

GTX 480 GPU cards. For OmegaDesk two Panasonic Viera TC-P65VT25 have been 

used. 

 The use of commercially available displays allows the flexibility of using any high-

resolution 3D consumer display system and enables the low cost construction of such 

work-desks. While the cost of high-resolution 3D displays has dropped significantly in 

the past 5 years, it is our belief that it will drop further, making it affordable to build 

future OmegaDesk-like work desks.  

 

 



 

Fig. 2. This figure shows the various commercial technologies that make up OmegaDesk. 

Table 1. Operational modes of OmegaDesk 

Operational Mode Potential Application Usage 

Top 3D, Bottom 3D Fully immersive mode. Ideal for applications that 

require navigation thru a virtual space or bringing 3D 

objects close-up for manipulations, etc. 

Top 3D, Bottom 2D 3D Viewer mode. The vertical display is used to 

visualize 3D objects and worlds, while the horizontal 

display can be used to control aspects of the visuali-

zation.  

Top 2D, Bottom 3D ‘Bathtub’ mode. The horizontal display is used to 

look at 3D data bottom-down, like looking at a fish 

tank from top and the vertical display is used to look 

at 2D projections or slices of the data. 

Top 2D, Bottom 2D Touch augmented desktop / cubicle mode. The verti-

cal display is the wall of the cubicle while the hori-

zontal display is like a giant iPad where document 

editing and manipulation can be performed. 

3.1 Input Interfaces 

For manipulation of objects in 2D the bottom display is overlayed with the Multi-

Touch G
3
 Plus overlay manufactured by PQLabs that can detect simultaneously up to 

32 touches. For head tracking and 3D object manipulation OmegaDesk can use either 

the five OptiTrack FLEX:V100R2-FS positioned around OmegaDesk or a Microsoft 

Kinect. Kinect user tracking is performed through the OpenNI library. While Kinect 

can perform tether-less multi-body tracking, it lacks the accuracy of OptiTrack and 

does not provide orientation for all the tracked body parts. On the other hand the cov-

erage area of OptiTrack is reduced in comparison with the Kinect’s (Fig. 3). 

 



 

Fig. 3. This diagram shows the area of coverage of both the Optitrack and the Kinect. 

Immersive navigation is accomplished with the use of game controllers. With the 

wide adoption of game consoles like the Wii, Xbox 360 and PlayStation 3 users are 

accustomed to navigate worlds using a game console. Both the PlayStation 3 and 

Xbox 360 wireless controllers can be used as props when developing applications for 

OmegaDesk. 

4   Omegalib 

The final software development objective for OmegaDesk would be the creation of a 

2D-3D-aware Operating System. A first step towards that objective is the implementa-

tion of a middleware system that would ease the development of applications on hy-

brid work desks, and increase their portability across hardware changes or device 

configurations. We explained how none of the existing libraries was covering our full 

set of requirements in an easy, out-of-the-box way. This led us to build our own soft-

ware development kit, called Omegalib. 

 

 
Fig. 4. This diagram shows the overall outline of the Omegalib architecture. 



4.1 Hardware abstraction 

Inside Omegalib, hardware abstraction is implemented through two concepts: display 

system abstraction and input system abstraction. 

 

Display system abstraction. Omegalib manages rendering using the concept of dis-

play systems: A display system takes care of setting up the graphical hardware system, 

creating windows and viewports, setting up transformations and rendering pipelines 

and calling the appropriate application-level rendering functions. Currently, two dis-

play systems have been implemented: a simple GLUT based display system used 

mainly for debug purposes, and an Equalizer based display system. 

Equalizer is a toolkit for scalable parallel rendering based on OpenGL. It allows 

users to develop scalable graphics applications for a wide range of systems ranging 

from large distributed visualization clusters and multi-processor multipipe graphics 

systems to single-processor single-pipe desktop machines [10]. In the near future, we 

are considering the introduction of a new display system to support autostereoscopic 

displays based on active parallax barriers, like the Dynallax [11]. 

The separation between rendering management and the actual application rendering 

code allowed us to support the concept of rendering layers. Layers represent concep-

tually separate sets of graphical primitives (for instance a 3D scene and a 2D inter-

face) that can be enabled or disabled for specific output channels of the display sys-

tem. In this way, it is very easy to implement separate 3D views for the same applica-

tion, or create a management window running on a secondary display, showing an 

administration UI or a debug-mode scene rendering. 

It is also possible to perform rendering of layers on separate threads, and compose 

them in the target channel frame buffer: this can be used to make the rendering per-

formance of 2D elements of the application independent from the complexity of the 

3D scene, in order to maintain a good frame rate and responsiveness on the UI as the 

visualized scene grows in complexity. 

 

Input device abstraction. Omegalib gives applications access to input devices 

through the concept of event services: an event service manages one physical or logi-

cal event source in the system. For instance it can: 

  offer access to events from a real input device, like a touch display or a mo-

tion capture system; 

  receive events from a remote source through a network connection; 

  generate input from a logical source, like a user interface button or slider; 

  process events from other sources to act as a background utility service. For 

example, a service can get position data for the user head from a tracking 

or motion capture service, update the observer head matrices for a scene 

and send the application updates on the user tracking status). 

Event services allow for a great deal of flexibility. They abstract the physical input 

devices available to the system. Also, they allow to modularize several common com-

ponents of a virtual reality application (like user tracking or network message pass-

ing), so that they can easily be reused in applications. 



Omegalib also supports the streaming of events to external applications, acting as a 

display-less input server. This simplifies the development of OmegaDesk applications 

using differents toolsets (as Unity or Processing) and streamlines the integration of 

input support into legacy applications that treat the device displays as normal screens, 

but want to use the motion capture, tracking or multitouch capabilities of OmegaDesk. 

 

Configuration. Similar to other VR libraries, Omegalib allows applications to be 

reconfigured using system description files: display system, event service and applica-

tion parameters are all stored in configuration files: the same application can run on 

OmegaDesk with head and hand tracking, on a multitouch tiled display without stereo 

support, or on a developer laptop using just mouse and keyboard interaction. 

4.2 Interaction 

Through use of tracker based mocap, Kinect user tracking and touch screens 

OmegaDesk offers a wide range of possibilities in terms of user interaction. Different 

applications may request subsets of the available input devices and implement an 

interaction scheme that works best for the specific application scenario: in some in-

stances, the motion capture system may be used just for head tracking, while interac-

tion with the application 3D objects can be realized through the touch screen. In other 

scenarios we may need a full mocap-based interaction scheme, with direct hand ma-

nipulation of the 3D objects. 

We think a certain, predefined number of interaction metaphors would satisfy most 

of the interaction needs of final applications. In this case, it makes sense to modularize 

them and make them available to application developers as packaged interaction 

schemes that can be easily turned on, off or switched inside an application, allowing 

for both consistency and reuse of interaction schemes, and fast prototyping of applica-

tions using different interaction techniques. To implement this, omegalib offers sup-

port for a simple scene graph system based on Ogre that can be controlled through 

interaction objects. These objects implement interaction policies, by getting input 

from the event services and controlling nodes and objects in the scene graph.  

4.3 Integration with Scientific Visualization tools.  

One of the purposes of OmegaDesk is to be used as a scientific visualization tool: it is 

therefore necessary to integrate it with standard tools and libraries, like the Visualiza-

tion Toolkit (VTK) [12]. Through Omegalib, Omegadesk is able to load VTK pipe-

lines as python scripts, render them through the omegalib display system and interact 

with VTK actors and 3D models using the interaction schemes presented in the previ-

ous section. VTK python scripts can also create user interface widgets that modify the 

visualization pipeline, and can be controlled through the touch screen. It is also possi-

ble to create VTK programs for OmegaDesk natively, using the C++ VTK API direct-

ly. This makes it extremely easy to build VTK programs for OmegaDesk or port lega-

cy pipelines to the system.  



 

 

Fig. 5. The integration of VTK pipelines inside Omegalib is done through a support module 

that performs VTK actor encapsulation and feeds back user actions to the pipeline. 

5   Application Case Studies 

A set of heterogeneous application has been developed on OmegaDesk so far. Some 

are built to test the interaction and display capabilities of the system while others are 

designed to solve domain-specific problems in areas as different as rehabilitation 

therapy, histology or fluid dynamics. 

5.1 Mesh Viewer / VTK Viewer 

The mesh viewer application has been developed to test 3D object manipulation via 

hand gestures. It allows the user to drop one or more objects inside a 3D scene by 

selecting them through the touch display. Interaction takes place using both hands to 

intuitively perform rotation, scaling and moving. Head and hand tracking can be pro-

vided by the Optitrack system or the Kinect alone. 

The VTK viewer application takes the mesh viewer concept a step further: it sup-

ports loading of VTK pipelines through python scripts and rendering of multiple VTK 

actors. These actors can then be manipulated using the same interaction techniques 

offered by the mesh viewer. Additionally, selected parameters of the VTK pipeline 

can be configured at runtime though a touch interface created dynamically on the 

bottom display. 

5.2 Physical Therapy Simulation 

The Physical Therapy Simulation is a rehabilitation exercise created using Unity3D 

and Omegalib through a collaborative effort with the Kinesiology department at UIC. 

It is used to test the efficacy of physical therapy through the use of VR. The scene 

consists of a simple room where a virtual ball is tossed to the patient. This has the 

effect of strengthening feedforward postural control in the user/patient which allows 

for maintaining a quality of balance during daily movements.  



This application will help determine if visual stereoscopy will provide enough vis-

ual cues to the brain to enhance current physical therapy methods. It utilizes  Omega-

lib's data streaming capability from an OptiTrack motion capture system and Kinect.  

5.3 Histology Viewer  

With the development of powerful microscope optics and the latest advances in image 

sensors that deliver high resolution imaging capabilities, the scientists are able to 

dwell into the micro and nano scale to explore sightings unseen under normal condi-

tions by the naked eye. In particular, in the medical lasers research field, physicians 

study 1cm by 0.5cm blocks of laser damaged skin. Using specialized hardware the 

block is sliced in 4 microns thick slices and digitized by the use of a powerful micro-

scope equipped with a medical imaging device. Typically the physicians use a stand-

ard image viewer to browse through the histology images and identify the damaged 

parts. 

To leverage the OmegaDesk capabilities, a prototype Histology Viewer was devel-

oped. The skin block is reconstructed by stacking the slices and using ray-casting 

algorithms to generate a data volume. The top display visualizes the 3D reconstruction 

and gives physicians the ability to look at the data with an high level of detail. The 

bottom multi-touch display controls the visualization and is used to select what slices 

of the block will be shown. The physicians can browse back and forth through the data 

by touching and sliding and also select slices of interest to investigate further. Zoom-

ing and rotating are also supported by the pinching and rotating gestures.  

5.4 Flow Visualization 

FlowViz is a generic 3D flow visualization for Omega Desk, The application has been 

built using Processing, and has been designed to be easily portable to devices offering 

a subset of the capabilities of OmegaDesk  The goal of the project was to create a tool 

that would enable the viewer to better understand the complex nature of flow data. It 

is thought that viewing the complex  3D flow in a native 3D environment will allow 

the viewer to better understand its behavior.  Also, by utilizing the multi-touch  inter-

face the viewer is allowed to interact with the simulation in an intuitive way: users can 

touch a 2D representation of the 3D view, causing a stream source to be spawned from 

the point touched.  This source can either be a dynamic particle generator or a static 

streamline.  Particles will flow through the vector field, exposing its behavior.  In 

addition the user may spawn multiple plot windows showing different representations 

of the model.  Users can brush over and select portions which outline corresponding 

regions of the 3D data. 



6   Evaluation and Future Work 

This paper presented OmegaDesk, a prototype 2D and 3D work desk. We described 

the requirements for such a system to be effective, and how we addressed them at the 

software and hardware level. The development of several heterogeneous applications 

on the system allowed us to assess its efficacy in very different domains. 

The presented applications made use of different device modalities. The mesh 

viewer used both displays as 3D viewports to create a more immersive experience, 

overlaying a 2D user interface on the touch-enabled screen, and used hand gestures to 

interact with the data. The histology and flow visualizations treated the bottom screen 

as a 2D data presentation display, with the entire interaction driven by the touch sur-

face (no hand gestures). Finally, the physical therapy simulation made use of the top 

3D screen only. In this case the interaction was based on hand and head tracking, 

without the need for touch support. Even the current set of applications does not cover 

all of the possible OmegaDesk configurations, it allowed us to develop an initial set of 

considerations and guidelines for future development on this platform. 

It is clear how 3D hand gestures can be used for approximate object manipulation, 

or for applications that don’t need precise control. In these instances they can be a 

very effective and intuitive way of interacting with the system. When more control is 

needed though, the power and precise control offered by a touch screen and a 2D or 

2.5D interface is unmatched. In this case, it is very important to link the information 

displayed on the 2D and 3D portions of the application, so that changes in one view of 

the data influence all the others. These changes should be propagated as quickly as 

possible and, most importantly, each view of the data should be able to update itself 

on the displays, without depending on the refresh speed of other views. This is similar 

in concept to the separation of processes running in an operating system: even if they 

can exchange data with each other, none of them should be allowed to slow down the 

entire system. 

Our future work will involve not only building new applications leveraging 

OmegaDesk capabilities, but also continuing the development of omegalib, to make it 

a complete, Operating System – like middleware supporting complex multimodal 

development on our evolving hardware system. 



Pictures 

 

Fig. 6. Photos of several applications running on OmegaDesk. (a) User interaction with 2D 

graphs of water flow in a specific area in Corpus Christi Bay as he compares them to the vector 

field of the surrounding areas. (b) Reviewing 2D histology slides while comparing them to the 

3D volume rendering. (c) A user rotating and translation an object within the mesh viewer. (d) 

A user using OmegaDesk to simulate catching a ball as part of physical therapy. 
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