
Template Choice and Template Hierarchy
Graph construction during the Partition Phase

in reconfigurable environment.

Alessandro Febretti - Alessandro Frossi

20th June 2006

1



Contents

1 Introduction 3

2 State of the art 4
2.1 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Isomorphic Partitioning . . . . . . . . . . . . . . . . . . . . . 8
2.4 Occupation and Evaluation Metrics . . . . . . . . . . . . . . . 9

3 The proposed methodology 11
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Template Choice . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Template Hierarchy Graph . . . . . . . . . . . . . . . . . . . . 17

3.3.1 THG Filling . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Dependency Identification . . . . . . . . . . . . . . . . 18
3.3.3 Postprocessing and Pruning . . . . . . . . . . . . . . . 19

3.4 DRESD Updates . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



Figure 1: DRESD WorkFlow

1 Introduction

This project is intended to be used within the PandA Project, developed
in Politecnico di Milano. The primary objective of the PandA project is
to develop a usable framework that will enable the research of new ideas in
the HW-SW Co-Design field; the current research program aims at defining
an efficient high-level synthesis tool that starting from C, C++ or SystemC
system descriptions generates synthesizable VHDL RTL descriptions. This
work, in particular, deals with partial dynamic reconfiguration (see Section
2) on FPGAs (Field Programmable Gate Array) and it is therefore strictly
related to (and developed within) the DRESD Project. The vision of the
DRESD Project is the research and development of methodology and tools
tailored to design, test and implement reconfigurable architectures; from a
less abstract point of view its mission is presented in 1: starting from an
High Level Specification (C or SystemC) the aim is to arrive at the actual
realization of a Reconfigurable Architecture that can be programmed on a
device. This procedure follows some well-defined steps: after the graph gen-
eration, the DFG just created is partitioned and the templates are identified
(along with their template hierarchy graph). These are then used to perform
scheduling of the application and the relative allocation on the device; the
solution is then simulated and validated and, at last, synthetized.

The problem that is addressed in this report is the Template Choice and
Candidate Evaluation: given as input a set of possible templates that cover
a Data Flow Graph, we want to identify isomorphic subgraphs common to
at least two of those templates, and classify them using given thresholds and
metrics.

Section 2 describes the state of the art and provides the definitions and
concept used during this work, while Section 3 outlines the problem and the
resolution methodology.
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2 State of the art

In this section is presented the environment and the starting point of our
work, as well as the main concepts encountered during the presentation of
the proposed methodology.

2.1 Reconfiguration

The concept of reconfigurable computing has been around since the 1960s,
when Gerald Estrin’s landmark paper proposed the concept of a computer
consisting of a standard processor and an array of ”‘reconfigurable”’ hard-
ware. The main processor would control the behavior of the reconfigurable
hardware. The reconfigurable hardware would then be tailored to perform
a specific task, such as image processing or pattern matching, as quickly as
a dedicated piece of hardware. Once the task was done, the hardware could
be adjusted to do some other task.

Therefore, a possible definition for reconfiguration can be:

Definition 2.1 (Reconfiguration) The process of physically altering the
location or functionality of network or system elements. Automatic configu-
ration describes the way sophisticated networks can readjust themselves in the
event of a link or device failing, enabling the network to continue operation.

In our scenario, reconfiguration is intended from a slight different point
of view: we’re not interested in performing different tasks (where different
means belonging to completely different applications) but we’re more con-
cerned with fitting applications into a programmable device. Usually, in fact,
applications are too big to fit entirely in a single device; one solution is to
use bigger devices but this can be very expensive. Another approach can be
to split the application in modules and program them on the FPGA one (or,
usually, more) at a time, allowing part of the computation to be performed as
if the whole logic was already written on the device. When other modules are
needed they’re dynamically programmed and computation can continue with
only a minimum loss in terms of computational time. The main drawback of
such an approach is that we introduce in our design latencies not related to
the application itself but to the way it is implemented on the FPGA: those
are the represented by the time spent on the reconfiguration phase, which
is very relevant with respect to execution time. Another drawback is that
it requires additional offline (on computers, for example) preparation, since
those modules have to be identified and properly scheduled.
The main pro is instead that with reconfiguration we can implement applica-
tions that would be big and would need bigger and more expensive devices.

4



Figure 2: An example of a DFG

In order to do that we need a way to outline the operations that have to be

performed and the dependencies (mainly RAW - read after write - dependen-
cies) among instructions; graphs seem the most easy and adapt instruments
we can use for this concern.

2.2 Data Flow Graph

A Data Flow Graph (DFG) is defined as

G = 〈O,P 〉 (1)

where O is the set of operations present in the original specification and P
are the edges connecting the various nodes in the graph and represent data
dependencies between the two instructions they connect. Tha DFGs we’re
going to consider are DAGs (Directed Acyclic Graphs); they must be directed
because dependencies are not commutative while for simplicity reasons where
assuming them to be also acyclic, for the time being. Moreover, each DFG

has an entry node (from which input parameters are derived) and an exit
node where the return data is sent; in this way we cannot obtained not
connected graphs, even when no depencies are present.

In Figure 2 is presented an example of a Data Flow Graph.
In addition to this, a function α has been defined as follow:

α : O → A (2)
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where A is the set of functional unit types, such that α(o) provides the
functional unit type, k associated to a given vertex o ∈ O; the cardinality of
A is:

|A| =
n∑
1

FUk (3)

where

• k is the index used to identify a functional unit type.

• FUk represents the number of functional unity of type k, FUk ∈ N .

Equation (3) is correct if holds
⋂

i...n FUk otherwise it becomes

|A| =
∣∣∣∣∣⋃
i...n

FUk

∣∣∣∣∣ (4)

The scenario behind Equation (4) is shown in Figure 3

Figure 3: Scenario Overview: Overlapping Functional Unit Type

Moreover, the numbering of inputs is modeled as a function

µ : P → N (5)

which associates each edge (o → o′), where α(o′) is a non-commutative
operation, to the index of the input which it provides. It will be assumed
that this information is also accessible in a way that lets us find the ancestor
of a node providing the input at a given index.

Due to the nature of current reconfigurable devices, it is not technolog-
ically feasible, nor probably it would be advantageous, to reconfigure logic
portions as small as those needed to implement a single operation from the
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specification. We then want to identify portions of the specification, i.e.
subgraphs, which will constitute our processing elements, or cores.

Let us then introduce the concept of node-induced subgraph:

Definition 2.2 (node-induced subgraph) A subgraph

S = 〈OS, PS〉 (6)

of the graph, defined in (1),

G = 〈O,P 〉

is defined by its vertex set OS ⊂ O, with its edge set subsequently defined
as PS = P ∩ (OS ×OS).

As a result of our partitioning phase, we want to obtain a collection of n
subgraphs S1, . . . , Sn, such that(⋃

i...n

Si

)
= O (7)

.
Each of these subgraphs represents a core, i.e. a processing unit that will

run independently of others to execute the operations represented by the
nodes contained in the subset.

Our next step is to collapse the original graph so that nodes belonging to
the same subgraph will now be aggregated as a single new vertex. By doing
so, we come up with a new intermediate representation, which takes the form
of a task graph T , having the previously identified subgraphs as its vertices,
defined as follows:

T = 〈OT = {S1, . . . , Sn}, PT ⊂ (OT ×OT )〉 (8)

with the edge set constructed as

∀ (o→ o′) ∈ P, ((o ∈ Sj) ∧ (o′ ∈ Sk) ∧ j 6= k ⇐⇒ (Sj → Sk) ∈ PT ) (9)

Dependencies in the original specification are all respected if we execute
the task graph nodes according to the precedences among them that we have
just defined. In fact, this ensures the correctness of the execution but might
force a suboptimal schedule by enforcing unnecessary precedences, depending
on the structure of the identified subgraphs [?].
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It easy to see that there is not only one way to obtain the T graph
defined in (8). There should be more than one policy that can be used to
drive the partitioner into the identification of a collection of the n subgraphs
S1, . . . , Sn subject to (7), that means that given an input specification G there
are several, i.e. m, feasible solution T1, T2, ..., Tm for the some partitioning
problem. According to this observation it is necessary to define an objective
function or, a methodology, that can be used to measure the goodness of a
solution Ti given an input specification G.

2.3 Isomorphic Partitioning

As already said it would not be technologically feasible nor advantageous
to reconfigure every single node of the DFG; the idea is therefore to identify
common subgraphs in the original Data Flow Graph: this is called Partition-
ing. There exists many algorithms and metrics to perform graph partitioning
(such as temporal partitioning or spatial partitioning) but the one used in this
project is based on isomorphism. Let’s now give some definitions:

Definition 2.3 (Isomorphic graphs) Two directed graphs G1 = 〈O1, P1〉
and G2 = 〈O2, P2〉 are said to be isomorphic if there exists a bijection p :
O1 → O2 s.t.

(o→ o′) ∈ P1 ⇐⇒ (p(o)→ p(o′)) ∈ P2

Definition 2.4 (Isomorphic data flow graphs) Two data flow graphs G1 =
〈O1, P1〉 and G2 = 〈O2, P2〉 are isomorphic if they satisfy definition 2.3 and,
in addition, the following hold:

∀o ∈ O1, α (o) = α (p (o))

and
∀ (o→ o′) ∈ P1, µ (o→ o′) = µ (p (o)→ p (o′))

where α and µ are defined as in (2) and in (5).

Now that we have defined what information we want to extract from
our specification, we need to find an efficient way of doing it. In literature,
the problem we are trying to tackle, i.e. recognizing isomorphic subgraphs
inside a single graph, is named the Isomorphic Subgraphs problem, and
is defined as follows:

Definition 2.5 (Isomorphic Subgraphs) Given a graph G, find two dis-
joing isomorphic subgraphs G1, G2 of G.

The practical way to do this is not part of this project.
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2.4 Occupation and Evaluation Metrics

Once we have identified all the isomorphic subgraphs within a given DFG, we
need a way to choose which, among them, are the best candidates to perform
reconfiguration. It means that need a practical rule to assign a score to every
template.
The most common and simple idea is to compute the total space that would
be occupied by each template and take a decision on which of them is the
most suitable for reconfiguration (Template Choice). In Figure 4 is presented

a list of possible metrics that can be used to estimate the validity of a tem-
plate. The one we’re going to consider is a subset of the Frame Occupancy
Estimation Metrics : with this metric every template is associated to a value
indicating the number of CLBs (or frames, but we can easily move from one
unit of measurement to the other, depending on the device) that it will use
in the target FPGA.
As depicted in the figure, each of those estimators (CLB Usage Estimation
and Communication Overhead Estimation) has three different behaviors that
can be adopted: M1 and M2 estimators use some algorithm to compute the
frame occupancy while Const simply sums the occupancy of each component
needed.
This means, for example, that an adder is split into its logic ports and all
the occupations are simply summed. In order to make this estimation less
”‘rough”’ an overhead due to the communication infrastructure is added (this
can be a constant factor or a more precise value). This kind of estimation,

even if rough, is widely used but the frame occupation of each operation
is not calculated in the way described above, since it would be a long and
error prone process, tough it would be more precise. The idea is instead
to get those values by experimental results, as performed in the thesis work
by Marco Magnone. Those results are reported in Table 1, where N is the
dimension in bytes of the data, i is the number of inputs (of the multiplexer)
and A is the FAN-IN: the CLB estimation is the one that is going to be used
throughout the whole project.

Small nodes are not the only ones that can lead to inefficiency if reconfig-
ured: also nodes that are too big (over a given threshold, usually) are not the
best candidates. The reason is simple: if programmed on the FPGS, they are
likely to prevent other modules to be on the device at same time, because of
their excessive occupation. Those modules can be split into smaller blocks
so that they fit on the FPGA leaving enough space for other cores. It would
also be good if the sub-modules now identified were common to more than
one template, in order to have less reconfiguration stages. This step is called
Candidate Choice.
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Figure 4: Metrics Definition
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Component CLB

Register (w/o Reset) N
2

Register (w/ Reset) N
2

Multiplexer A+N
4

Sum / Sub N
Counter N

2

Comparator (< or > ) N
2

Comparator (≤ or ≥) N
2
+1

Comparator (=) N
4

Comparator ( 6=) N
4
+1

Multiplier N2
2

if (N1=1)
N1*N2 if (1<N1<16)

(N1+N2)2

4
if (N1>16, 1≤N2<50)

N1*N2 otherwise
Logical operator (AND, OR, NAND, NOR) N

2

Logical operator (XOR, XNOR) N
2

if (2≤N≤ 4)
N otherwise

Table 1: Operators Occupancy

3 The proposed methodology

As previously said in Section 1 this work was developed within the DRESD
project, whose workflow is represented in Figure 1. To be precise, it is in-
serted in the Partitioning Phase, outlined in Figure 5.
The partitioning procedure starts from a DFG graph (output of the previous
phase of Graph Generation) and performs three operations, in order to give
as output a set of templates with informations on space occupation, graph
coverage and density.
The three phases are:

Template Generation : finds all the templates available in the graph with
no informations regarding their relationship

Template Choice : a Template Hierarchy Graph is built, also using metrics
to compute the space occupancy of each template

Template Growth : graph coverage is performed and templates are ex-
panded to cover all the nodes of the graph

In Section 3.1 the problem definition is presented, while Sections 3.2 and
3.3 describe the methodology adopted to solve respectively the Template
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Figure 5: Partitioner Working Scheme
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Choice and Template Hierarchy Graph constuction problems. Section 3.4
finally describes the updates needed to make this project properly imple-
mented and working; at last some final remarks are added.

3.1 Problem Definition

The aim of this project is to solve the Template and Candidate Choice.
The software solution has to be integrated in the Isomorphic Partitioner cre-
ated by Matteo Giani and receives as input a set of possible templates for
a given Data Flow Graph (those template are of size two or more). It has
to perform Template Choice evaluating the frame occupations (in percent-
age, that is over the total number of frames) of every template and discard
those whose occupation is below a given threshold; this limit represent the
percentage of total frames below which nodes are too small to be good can-
didates for reconfiguration (because of high reconfiguration latencies and the
problems depicted before). At this point Candidate Choice has to be per-
formed, keeping in mind the improvements described above: for every couple
of templates we have to identify a possible common isomorphic subgraph
that satisfies a second condition. This condition is that they’re size must
be over another threshold, calculated multiplying the higher threshold by a
constant a (0<a<1) given as input; the reason for this is that we don’t need
subgraphs that are too small, in order to avoid too many reconfigurations
phases and consequent losses of performances and increasing latency timings.
In the next subsections is described in detail how the two phases described

above have been implemented. Throughout the description of this work we’ll
use the following source code:

01. int test_code( int io, int * o1, int i1, int i2 )

02. {

03. int a1, b1, a2, b2, a, b, c, d;

04.

05. i1 *= 2;

06. a1 = i1 + 1;

07. a2 = i1 - 4;

08. a = a1 / a2;

09.

10. i2 *= 4;

11. b1 = i2 + 2;

12. b2 = i2 - 10;

13. b = b1 / b2;

14.
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15. c = io + 16;

16. c = c / *o1;

17.

18. d = io + 24;

19. d = d / *o1;

20.

21. return (a+b) / (c-d);

22. }

It gets 4 parameters as input and declares 8 other integers (internal vars).
Notice that in the code there isn’t any loop but it is quite linear, to avoid
cycles in the Data Flow Graph. Let’s now try to identify all the RAW data
dependencies that will be outlined by the resulting DFG:

i1 -> a1, a2

a1, a2 -> a

i2 -> b1, b2

b1, b2 -> b

c -> c

d -> d

In lines 15 and 16 (as well as in 18 and 19) there is a WAW -write after
write- dependency: this is solved by simply renaming the variables and using
Internal names to have them defined (Internal #, usually). Once this WAW
dependency has been solved, only the RAW one remains and it’s pointed out
in the graph. The resulting Data Flow Graph will be the one in Figure 6:
the Entry node is the common ancestor of the tree while the Exit node gets
the result of the function (it works exactly as an exit point).

Running the IsoMorphic Partitioner by Matteo Giani on the previous
example we obtain a set of templates ordered by cardinality (they’re obtained
incrementally): there are three different templates of size 2, five of size 3 and
one of size 4, as it can be seen in the following caption from the output of
the partitioner itself. These are the templates we’re going to work on.

[AGGR]: *********************** STATS ***************************

[AGGR]: Number of identified template cardinality sets: 3

[AGGR]: Number of instances for each template, by size:

[AGGR]: Size 2 ( 10.5263% of total vertices ) - 3 templates:
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Figure 6: Data Flow Graph of the example code

[...]

[AGGR]: Size 3 ( 15.7895% of total vertices ) - 5 templates:

[...]

[AGGR]: Size 4 ( 21.0526% of total vertices ) - 1 templates:

3.2 Template Choice

The first phase of our work is to choose which templates, among all the
one that have been identified, are more suitable for reconfiguration. So we
have to use the metrics described in Section 2 to compute the occupation of
each template; this value is then used to give a percentage of the total area
of the FPGA that will be taken. The total area available on a device is a

parameter depending on the device itself and it’s expressed in frames. This is
consequence of the architecture of the FPGA: the logical unit on the FPGA
is the CLB (configurable logic blocks) and it has a fixed dimension in terms
of frame. Here are some of the parameters available for each device (in the
example below we’re referring to the XC2VP7):

device_name XC2VP7;

number_of_frame 1920;

CLBxColumn 40;

CLBxRow 34;

slicexCLB 4;

LUTxslice 2;
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TBUFxCLB 2;

We’re only concerned with number of frame, CLBxColumn and CLBxRow:
the first is the total number of frames on the FPGA (used to calculate the
percentage), the second and the third represent the number of CLB present
respectively on a column and a row (imagine the programmable area as a
grid). In order to convert CLBs into frames we need another information,
common to all the devices: a column is 48 frames wide; this means that a
CLB has a width of exactly 48 frames. Now that we have all the informa-
tion needed, we can estimate (it’s always an estimation) the total number of
frames needed by every template: we simply have to count the total CLBs
used, referring to the operation implemented in the node and to the occupan-
cies in Table 1, convert them into frames and compute the total ratio. The

first step, therefore, is to get a template and, for each node it contains, sum
up all the CLB occupancies of the operations. This procedure returns a CLB
occupation estimation: this value, anyway, is quite ”‘rough”’ since we’re not
taking into account yet the space needed for communication purposes, or to
interconnect the various operators. That is, we’re discarding what in Figure
4 is called Communication Overhead Estimation. We can bypass this prob-
lem by simply multiplying the total CLB count by a constant factor (usually
1.25 is used) to better approximate the real occupation.

Now we simply have to find out how many columns we need and multiply
that value by the number of frames for each column (48) to get the total
number of frames used. Getting the percentage from here is trivial. Running
the estimator on the same graph as before we get the following results:

Occupancy of templates of size: 2

Template CLB count:7

Template occupancy: 2.5%

Template CLB count:7

Template occupancy: 2.5%

Template CLB count:2

Template occupancy: 2.5%

Occupancy of templates of size: 3

Template CLB count:12

Template occupancy: 2.5%

Template CLB count:10

Template occupancy: 2.5%

Template CLB count:7

Template occupancy: 2.5%

Template CLB count:10
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Template occupancy: 2.5%

Template CLB count:12

Template occupancy: 2.5%

Occupancy of templates of size: 4

Template CLB count:15

Template occupancy: 2.5%

Another value that will be important in evaluating a template and choos-
ing which are the best candidates is the density. In reconfiguring a device
the least unit that can be written is a column (48 frames wide); assuming
therefore that a column is composed of 34 CLBs, we have that cores built on
36 and 60 CLBs have the same occupancy on the FPGA.
It is anyway better to optimize how the space is used and justify the time
spent on reconfiguration: the former of those template has a density lower
than the latter and it’s therefore more suitable for expansion during the
template growth, since the aim is avoiding the use of another column on the
device for reconfiguration. A way to decide on this issue is assigning a value
to each template stating how much of the last column will be taken: this
value is called density.
In our code it will be computed by simply dividing the number of used CLBs
in the last column by the total number of CLBs in a column; this gives the
percentage of space occupied in the last column needed.

3.3 Template Hierarchy Graph

Now that a way to compute the graph / module occupancy has been defined,
it is possible to decide (using a given threshold) what are the best candidate
templates for reconfiguration. Before explaining how Candidate Evaluation
and Choice work, we have to look at the existing partitioner to see where to
fill in our code. The isomorphic partitioner by Matteo Giani has two main
work phases:
1. templates identification
2. template growth (also known as graph coverage)

The template choice and THG construction phases should be performed
between those two steps since its output will be needed to have informations
on how to optimize the template growth and graph coverage; in this sense
some data on the scheduling would be very useful as well.
The Template Hierarchy Graph construction is performed in the three fol-

lowing steps, which will be shortly explained afterwards:

1. THG filling
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2. Dependency identification

3. Postprocessing and pruning

3.3.1 THG Filling

The aim of this phase is to simply populate the THG with all the templates
identified by the partitioner and stored in its own data structure; no depen-
dencies and relationship among the newly inserted nodes are added, so our
graph will contain only nodes with no edges.
The reason for this phase to be performed is to detach as much as possible
the construction of the THG from the data structures used and created by
the partitioner, so that the following phases will be completely independent
by them. Another pro of this approach is that informations on templates
such as occupancy, graph coverage, density, etc are computed only once at
this point and are efficiently stored in the nodes in the THG. The way this

operation is performed is quite trivial: the set of templates created in the
Template Identification phase is simply visited and each entry is copied in
the THG structure.

3.3.2 Dependency Identification

Now that the THG is completely filled and contains all the nodes it needs,
dependencies have to be found. A dependency, as said before, is a parent-
children relation in which the child derives from the parent by expansion; that
is, the children contain all the nodes of the parents and at least one more.
The algorithm works as follows: for each template couple (TBig, TSmall) some
conditions are first checked. Those conditions are:

• TBig’s number of instances must be less or equal than TSmall’s.

• The number of vertices of one of TBig’s instances must be strictly less
than the number of vertices of one of TSmall’s instances.

If one or both the previous conditions is not met, it is impossible for TSmall

to be an ancestor of TBig in the THG so the algorithm will not process the
specified couple.
Otherwise it works as follows:

At this point the THG will contain all the nodes and relative edges but
with some redundancies that have to pruned. The next section will describe
how to detect and solve them.
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Algorithm 1 ProcessTHGPair(TBig, TSmall)

IBig ← instance of TBig

for all instance Ih ∈ TBig do
found vertices← 0
for all vertex Vk ∈ Ih do

if Vk ∈ IBig then
found vertices← found vertices + 1

end if
end for
if cardinality of Ih == found vertices then

create edge TSmall → TBig

return
end if

end for

3.3.3 Postprocessing and Pruning

There are two different problems in the THG as it is now.
The first one is the presence of Transitive Edges : as shown in Figure 7(a),
during Dependency Identification, if the dependency T1← T2← T3 is found,
the dependency T1 ← T3 will be found as well. The latter is obviously re-
dundant and can thus be removed; the result of such an operation is depicted
in Figure 7(b).

Algorithm 2 RemoveTransitiveEdges(THG)

pruned edges← �
for all vertex Vh ∈ THG do

for all vertex Vk ∈ adjacent vertices(Vh) do
for all vertex Vj ∈ adjacent vertices(Vk) do

if ∃edge Vh → Vj then
add 〈Vh, Vj〉 to pruned edges

end if
end for

end for
end for
for all 〈Vh, Vj〉 ∈ pruned edges do

remove edge Vh → Vj

end for

The second kind of redundancy is due to nodes with just one outgoing
edge, as shown in Figure 8(a). These nodes represent templates with just
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Figure 7: Transitive Edges identification and elimination

one child relation, that is, they do not represent subgraphs common to two
or more templates. Due to this reason, this kind of nodes does not gain any
additional or useful information in the THG and can be pruned away, as
Figure 8(b) shows.

Algorithm 3 RemoveNodeChains(THG)

repeat
done← TRUE
for all vertex Vh ∈ THG do

if |adjacent vertices(Vh)| == 1 then
done← FALSE
Vnext ← adjacent vertex(Vh)
for all vertex Vk ∈ inverse adjacent vertices(Vh) do

create edge Vk → Vnext

end for
remove vertex Vh from THG

end if
end for

until not done

3.4 DRESD Updates

As said when defining the problem, some parameters are given as input in
order to make some choices on which templates can be discarded and, on
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Figure 8: Single-dependency nodes elimination

the other hand, what are the best candidates for reconfiguration; these pa-
rameters are the Occupancy Threshold, the constant factor to get the lower
threshold and the device used. The user must therefore be made able to

provide these values at prompt line, exactly in the same way he can de-
cide on what partition algorithm to use: some modifications to the original
executable file are so required. First of all we have to choose the proper
strings for the options to be defined: for the Occupancy Threshold the op-
tion −−occupancy-threshold (-o) can be good, as well as −−lower-threshold-
constant (-l) and −−device-name (-d) for the other two parameters. The
following code fragment shows how these options were made available in the
executable file:

const struct option long_options[] =

{

[...]

{"occupancy-threshold", required_argument, 0, ’o’},

{"lower-threshold-constant" , required_argument, 0, ’l’},

{"device-name", required_argument, 0, ’n’},

[...]

{ 0, 0, 0, 0}

};

Those input parameters are then parsed and converted into integers and
floating point numbers where necessary; if an error occurs or their values are
out of the defined boundaries ((0, 100] for the occupancy and (0, 1] for the
constant) they’re simply put to their default values. They are 80%, 0.5 and
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”‘XC2VP7”’ respectively. Now when calling the DRESD executable file the
three new parameters can be specified and the output looks as follows:

$ ./dresd -a bachl -p test_code -o 72 -l .3 -n XC2VP7 [file]

User requested partitioning algorithm: "bachl"

Reconfigurable system partitioner

User requested template choice occupancy threshold: 72%

User requested candidate choice occupancy constant: .3

User requested device: XC2VP7

Using device XC2VP7 with occupancy threshold = 72% and

lower threshold constant = 0.3

...

3.5 Final Remarks

The aim of this project was to create and implement the instruments that
will help the designer in taking some decisions during the following phases
of the design of the reconfigurable architecture. The occupancy metrics and
the THG can prove useful when having to choose what are the templates
that can minimize the reconfiguration time, that is in the Scheduling and
Allocation phase.
Therefore it would be difficult to show the results of just this work, except for
some generated THGs, since every result must be properly evaluated in the
following phases and no considerations can be done for the time being. One of

the improvement that will be probably implemented in the near future is the
study and refinement of the metrics adopted, maybe taking into account not
only the operations present in a template but also the operation dependencies
among different templates (to maximize the reuse of the resources over time,
for example).
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