
FCUDA: ENABLING EFFICIENT
COMPUTATION OF CUDA KERNELS
ONTO FPGAS

Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton,
Deming Chen, Jason Cong, Wen-Mei W. Hwu

CS525 Presentation: Alessandro Febretti

About the Paper

 Best paper award at IEEE SASP’09

Deming Chen, Wen-mei Hwu
Coordinated Science Laboratory, UIUC

Alexander Papakonstantinou, PhD Student
John Stratton, M.S.

Jason Cong
Center for Customizable Domain-Specific Computing, UCLA

Karthik Gururaj, PhD Student

Objective

 Running CUDA kernels on Field-programmable
gate arrays

 Reconfigurable hardware: ICs whose logic can be
modified.

 Created as substitutes for ASICs in certain areas

 Parallel by nature

 High energy efficiency (~6X vs GPUs)

How does an FPGA work?

 Grid of Configurable Logic
Blocks.

 CLBs connected by routing
channels with configurable
switches.

 Sometimes higher level
hardware

 DSPs, ALUs, …

How to program FPGAs

Device

Schematic

Hardware
Description
Language

High Level
Language

Why FCUDA?

 Use common language
for CPUs, GPUs, FPGAs
 GPU/FPGA architectures

 Some kernels run
faster on a FPGA

 Easy to express
parallelism in CUDA

Program

CUDA

GPU CPU

FCUDA

FPGA

Cuda to FPGA flow

FPGA
guidelines in
#pragmas

CUDA
Code

Coarse-
grained

parallelism
extraction

FCUDA
Code

syntesis AutoPilot
C Code

RTL
Design

Autopilot C

 Parallelism expressed through #pragmas inside
code

 Explicit sync barriers

 No thread level sync

 No shared memory

FCUDA philosophy

 Transform CUDA thread-blocks into parallel
AutoPilot function calls.
 Thread-block level maps well to hardware-parallel

cores.

 threads inside a block are executed sequentially

 Decouple computation to off-chip memory
transfers
 Avoid latency problems.

Parallelism Extraction

Memory Access

 DMA controller transfers
to-from BRAM

 Logic has no direct access
to off-chip memory

FPGA

Compute Logic

BRAM

Off Chip Memory

Sample annotated kernel
#pragma FCUDA GRID x_dim=2 y_dim=1 begin name="cp_grid"
#pragma FCUDA BLOCKS start_x=0 end_x=128 start_y=0 end_y=128
#pragma FCUDA SYNC type=simple
__global__ void cenergy(int numatoms, int gridspacing, int* energygrid)
{

#pragma FCUDA TRANSFER cores=1 type=burst begin name="fetch"
#pragma FCUDA DATA type=load from=atominfo start=0 end=MAXATOMS
#pragma FCUDA TRANSFER end name="fetch"
#pragma FCUDA COMPUTE cores=2 begin name="cp_block"
. . .
int energyval = 0;
/* For each atom, compute and accumulate its contribution to
 energyval for this thread's grid point */
for (atomid=0; atomid < numatoms; atomid++)
{
 . . .
 energyval += atominfo[atomid].w * r_1;
}
#pragma FCUDA COMPUTE end name="cp_block"
#pragma FCUDA TRANSFER cores=1 type=burst begin name="write"
energygrid[outaddr] += energyval;
#pragma FCUDA TRANSFER end name="write"

}
#pragma FCUDA GRID end name="cp_grid"

Experimental results
Kernel Configuration Description

Matrix Multiply (matmul) 1024x1024 Common kernel in many imaging, simulation, and scientific application

Coulombic Potential (cp) 4000 atoms, 512x512 grid Computation of electric potential in a volume containing charged atoms.

RSA Encryption (rc5-72) 1 Billion keys Brute force encryption key generation and matching

THANK YOU!

