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Summary

We show that it is possible to create a Toffoli gate acting on the trapped ion’s
three center-of-mass vibrational qubits. We make use of this quantum gate in
implementing a single-ion stochastic quantum processor that consists of a C-
NOT and a Toffoli gate. The C-NOT gate is implemented with two-dimensional
vibrational qubits of the ion’s center-of-mass motion. Control and coupling
to the ion’s internal electronic states is achieved via far-detuned lasers excit-
ing a Raman Λ transition. We then implement a second-order scheme for
a stochastic one-qubit processor proposed by Vidal et al.[3] The one-qubit
processor implements with success probability p = 3/4 the unitary opera-
tion Uα = exp(iασz/2). corresponding to a rotation for an arbitrary angle
α ∈ [0, 2π) around the z axis of the Bloch sphere of the data qubit. The rel-
evant property of this programmable processor is that the unitary operation U
desired is specified by input program states and not by altering the processor
itself. This particular implementation uses a two-qubit program register (states
|α〉 and |2α〉) and a single-qubit data register (state |d〉).
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FIGURE 1: (left) 3D RF Paul Trap. An RF field is applied between the hyperboloidal endcaps
(red) and ring (blue). A charged particle will experience, to a good approximation, a three-
dimensional harmonic potential. FIGURE 2: (right) An ion in a 3D harmonic potential well is
illuminated with two lasers.
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Classical lasers, of frequency ω12 and ω23, detuned
from resonance by ∆12 and ∆23 respectively, induce
a Λ Raman transition, coupling its three-dimensional
center of mass movement to the ion’s internal elec-
tronic state.

→ FIGURE 4: Schematic programmable quantum gate
array. The fixed array G takes a data qubit state
|d〉D ∈ HD and appplies a unitary transformation U ,
which is determined by the program state |PU〉P ∈ HP ,
and leaves also a residual state |RU〉P ∈ HP .
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← FIGURE 5: One-qubit
stochastic quantum proces-
sor. It takes, as input, the
data state |d〉D and program
states |α〉P1 and |2α〉P2. An
unsuccessful operation will
be detected (with probability
p = 1/4) if

the program registers are measured to be |1〉P1 y |1〉P2. In any other case, a succesful applica-
tion of the desired transformation will be detected, and the data state will now be Uα|d〉D.
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FIGURE 6: Schematic processor operation. (Note: Fracaso = Failure, Éxito=Success).

Trapped Ion Quantum Gates

The single ion stochastic quantum processor requires one C-NOT gate and one Toffoli gate. These can be implemented as a particular series
of pulses of laser light that subject the ion to dynamics governed by the following four interaction Hamiltonians:

H1C = ~Ω1C(a†σ− + aσ+), H2T = i~Ω2T (a†b†σ− − abσ+),

H2C = −~Ω2C(a†b†σ− + abσ+), H3T = −i~Ω3T (a†b†c†σ− − abcσ+). (1)

These Hamiltonians may be derived from the general dynamics of a trapped ion interacting with two lasers as follows. We consider an
effective three-level ion trapped in a 3D RF Paul trap (Fig. 1). The ion is confined to a three-dimensional harmonic potential, characterized
by νa, νb and νc, the trap’s frequencies in the x, y and z directions respectively, and is illuminated by two classical external fields of
frequencies ω12 and ω23 respectively (Fig. 2). These are chosen far detuned from the excited state |2〉, thus generating a stimulated Λ Raman
transition between the two states |1〉 and |3〉, as depicted in Fig. 3. In this far-detuned case, we can adiabatically eliminate the excited state
|2〉 from the relevant dynamics [1]. After doing so, in the interaction picture we perform the rotating wave approximation to obtain, for the
interaction Hamiltonian,

Hi = −~Ω13e
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a†maµb†nbνc†lcλei(νa(m−µ)+νb(n−ν)+νc(l−λ)+∆13)tσ13 + H.c., (2)

where a, b, c (a†, b†, c†) are the harmonic oscillator anihilation (creation) operators in the x, y, z directions, respectively and σ13 = |1〉〈3| is
the electronic state transition operator between levels |3〉 → |1〉 . Ω13 is the new Raman coupling between levels |1〉 and |3〉, found after the
adiabatic elimination of level |2〉. The laser detunings are defined as ∆12 = (ω2 − ω1)− ω12 and ∆23 = (ω2 − ω3)− ω23. The Lamb-Dicke
parameters are given by ηi = ∆ki

√
~/2νim, (i = x, y, z), with m the mass of the ion and ∆ki the i-component of the difference between

the lasers’ wave vectors k1 − k2. We have also defined the detuning ∆13 = ω12 − ω23 − (ω̃3 − ω̃1), where ω̃i is the Stark-shifted frequency
associated with the electronic state |i〉.

By choosing suitable suitable frequencies of the lasers we can select stationary terms in Eq. 2, thus engineering the specific Hamiltonians
required for our purpose. Indeed, by choosing the laser frequencies as ω12 = ωc − ω̃1 − νa − νb − νc and ω23 = ωc − ω̃3, where ωc is an
arbitrary reference frequency, we select only the resonant terms, that is, those for which the argument of the exponential in Eq. 2 vanishes.
In the Lamb-Dicke limit, keeping the lowest-order terms in ηx, ηy and ηz, the Hamiltonian coupling the x, y and z motion of the ion to the
electronic state can be written as

H3T = i~Ω3T (a†b†c†σ13 − abcσ31) with Ω3T ≡ |Ω13|e−
1
2(η
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z)ηxηyηz. (3)

H1C , H2C and H2T can be derived in a similar fashion, thus achieving our objective of generating the Hamiltonians in 1.

If we define the operation UiC(ΩiCt) as shorthand for the application of the time evolution of HiC via suitably-detuned laser pulses (and
similarly for the T subscript hamiltonians) during an interval ΩiCt, we can summarize the protocol for the C-NOT gate by the sequential
application of U2C(π/2), U1C(π/2), U2C(π/2) to the state vector. This realization uses two vibrational qubits as control and target for the
gate. Similarly, the Toffoli gate protocol requires the sequential application of U3T (π/2), U2T (π/2), U3T (π/2), and uses three vibrational
qubits, two for the controls and one for the target qubit. We are thus able to perform both C-NOT and Toffoli operations on a single trapped
ion, thus paving the way for the Stochastic Programmable Singe-Qubit Processor.

Stochastic Programmable Singe-Qubit Processor

Quantum information may be processed by means of unitary transformations acting on qubits. These transformations are usually imple-
mented with fixed quantum gate arrays. Instead of building a different gate array for each required operation, it is possible to build a fixed
gate array that takes as inputs not only data qubits, but also program qubits, defining the operation itself. Unfortunately it is not possible
to build a fixed and general-purpose quantum processor which can be programmed to perform an arbitrary quantum computation, since its
operation must be necessarily stochastic in nature, as was shown by Nielsen et al.[2]. As an attempt at sidestepping this limitation, Vidal et
al. have proposed in Ref. [3] a stochastic programmable gate with a probability of failure ε = 2−N , with the number N of program qubits
that store the unitary transformation. They take as a particular case the one-qubit unitary operation

Uα = exp(iασz/2), (4)

which corresponds to an α-rotation about the z axis of the Bloch sphere of the data qubit. In this concrete realization of their scheme, using
a C-NOT gate and a Toffoli gate, we will limit ourselves to describing the unitary operation Uα using N = 2 qubits.

We start by defining the program HP and data HD Hilbert spaces. Initially, the system is in the state |d〉D ⊗ |PU〉P , where |d〉D ∈ HD
and |PU〉P ∈ HP . The total dynamics of the programmable gate array are described by a fixed unitary operator G, which implements the
desired unitary operation U given the program state |PU〉P , that is,

G [ |d〉D ⊗ |PU〉P ] = (U |d〉D)⊗ |RU〉P , (5)

where |RU〉D is a residual state shown to be independent of the data state. After application of G, the data state |d〉D has been transformed
by the unitary operation U into U |d〉D.

To understand the procedure, we will consider the case of a single program register. Let us first define the program |α〉P and data |d〉D states
as

|α〉P ≡ (eiα/2|0〉P + e−iα/2|1〉P)/
√

2 and |d〉D ≡ (A|0〉D + B|1〉D)/
√

2. (6)

The operation G that realizes the transformation in Eq. 5 is easily shown to be a C-NOT gate. Indeed, If we represent the C-NOT gate as
GC-NOT, with σx = (|1〉〈0|+ |0〉〈1|)P , where the data register is the control qubit and the program register is the target qubit, it follows that
C-NOT [ |d〉D|α〉P ] = 1√

2
(Uα|d〉D)⊗ |0〉P + U

†
α|d〉D⊗ |1〉P). In this case, a measurement on the program register will cause a collapse of

the data qubit with outcome Uα|d〉D or U
†
α|d〉D, both with probability p = 1/2.

To improve upon this scheme, we introduce an additional Toffoli gate, as in Fig. 5. The processor now uses two Hilbert spaces to store
the program, HP1 and HP2. When the output of the C-NOT on the first program register line is |0〉P1, corresponding to the case where Uα

was applied to the data (success), the output on the data line is unchanged. On the other hand, if the output on the first program register
line is |1〉P1, indicating an application of U

†
α (failure), the Toffoli gate effectively acts as a C-NOT gate between the data register line and

the second program register line. In this way, in case of failure, we have a chance to correct it. If we select the second program qubit as
|2α〉P2 there is again a one-half chance that, upon performing a measurement on the outcome of both program register lines, U2αU

†
α = Uα

will have been applied to |d〉D. Thus the total probability of success is p = 1/2 + 1/4 = 3/4. The other alternative (the application of U
†3
α )

occurs with probability p = 1/4 and corresponds to the case when one obtains 1 as the final outcome from both program register lines. This
is schematically illustrated in Fig 6.

Abstract

We propose a scheme for implementing a single-ion Stochastic Quantum Processor using a single cold trapped ion’s internal state and 3-axis center-of-mass vibrational states as qubits. The
processor implements an arbitrary rotation around the z axis of the Bloch sphere of a data qubit, given two program qubits, that is, the operation realized on the data is determined by using
different program qubits and not by varying the gate itself. Unfortunately this cannot be done deterministically, and must be necessarily stochastic. In this proposal the operation is applied
successfully with probability p = 3/4.
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