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Introduction

These notes show the solutions of a few selected problems from Munkres [1],
book.
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Chapter 4: Change of Variables

Section 16: Partitions of Unity

Problem 1.

Prove that the function f of Lemma 16.1 is of class C∞ as follows: Given
any integer n ≥ 0, define fn : R→ R by the equation

fn(x) =

 (e−1/x/xn) for x > 0,

0 for x ≤ 0.

(a) Show that fn is continuous at 0. [Hint: Show that a < ea for all a. Then
set a = t/2n to conclude that

tn

et
<

(2n)n

et/2
(4.0.1)

Set t = 1/x and let x approach 0 through positive values.]

sln. Let us first show that a < ea. The function f(a) = ea − a, has
derivative f ′(a) = ea − 1. That is, f ′(a) > 0, ∀a > 0. That is the func-
tion is monotonically increasing in the positive a axis and monotonically
decreasing in the negative a axis. That is,

a < ea ∀a > 0

If a = 0, from 0 < 1, and if a < 0, from a < 0 < ea,∀a < 0, we see that
in general a < ea. In particular, if a = t/2n we get

t

2n
< et/2n

5
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and by raising the power to the n in both sides

tn

(2n)n
< et/2 = et/et/2

from which equation 4.0.1 follows. Let us now call x = 1/t so we
rewrite 4.0.1 as

e−1/x

xn
<

(2n)n

e1/2x

Clearly as x→ 0+, e1/2x →∞ and so (2n)n/e1/2x → 0, so by the squeeze

theorem, fn(x) = e−1/x

xn
→ 0. That is limx→0+ fn(x) = fn(0). So f is

continuous in 0.

(b) Show that fn is differentiable at 0. The left derivative exists and is 0,
since the function is identically zero on the left x axis. Let us check along
the right x axis. By definition, and from fn(0) = 0,

f ′n(0+) = lim
h→0+

fn(h)− fn(0)

h

= lim
h→0+

fn(h)

h

= lim
h→0+

e−1/h

hn+1

<
(2n)n

he1/2h

The denominator he1/2h goes to ∞ as h → 0+. To understand this,
expand the denominator in Taylor series (which is fine for small h). Then

he1/2h = h(1 + 1/2h+ (1/2h)2/2! + · · ·+ (1/2h)k/k! + · · · )
= h+ 1/2 + 1/8h+O(1/h2)

which clearly goes to ∞ as h → 0. So in the limit f ′n(0+) = 0 and fn is
differentiable at 0.

(c) Show that f ′n(x) = fn+1(x) − nfn+1(x) for all x. By direct evaluation,
from Leibniz product rule

f ′n(x) = e−1/x/xn+2 − ne−1/x/xn+1 = fn+2(x)− nfn+1(x), ∀x (4.0.2)
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(d) Show that fn is of class C∞. The recursion formula 4.0.2 shows that
the derivative of fn can be written in terms of functions fn+1 and fn+2,
weighted with coefficients 1 and −n respectively. To the derivative exists
and its continuous for all n (an induction argument).

Problem 2.

Show that the functions defined in Example 1 form a partition of unity on
R. [Hint: Let

fm(x) = f(x−mπ), for all integers m. (4.0.3)

Show that ∑
f2m(x) = (1 + cosx)/2. (4.0.4)

Then find
∑
f2m+1(x)].

sln. I believe the hint make the problem more complicated. Let us perform
a direct evaluation of

∑
φi(x).

Let us consider the case of x ∈ [−π, π] where f has a support. here are
two cases

• Even indices:

φ2m(x) = f(x+mπ), m ≥ 1.

If −π ≤ x ≤ π and −π ≤ x+mπ ≤ π then

Here the only possible value is m = 1, since a higher value will shift the
argument from 0 by 2π or greater and the function f would evaluate
to zero there, and it is necessary that x ≤ 0. Hence, for −π ≤ x ≤ 0,∑

φ2m(x) = f(x+ π) =
1 + cos(x+ π)

2
=

1− cosx

2
, (4.0.5)

• Odd indices:

φ2m+1(x) = f(x−mπ), m ≥ 0.
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If −π ≤ x ≤ π and −π ≤ x −mπ ≤ π then we have two possibilities
m = 0, 1. That is,

φ1(x) = f(x) = (1 + cosx)/2, −π ≤ x ≤ π

φ3(x) = f(x− π) = (1 + cos(x− π))/2 = (1− cosx)/2, 0 ≤ x ≤ π

so

∑
φ2m+1(x) =


(1 + cos x)/2 −π ≤ x ≤ 0,

1 0 ≤ x ≤ π,
(4.0.6)

We now add all parts, from equations 4.0.5 and 4.0.6∑
φi(x) =

∑
(φ2m(x) + φ2m+1(x)) =

{
1 −π ≤ x ≤ 0
1 0 ≤ x ≤ π

That is ∑
φi(x) = 1.

in the interval [−π, π].

Note that for the negative branches we added (1 − cosx)/2 + (1 +
cosx)/2 = 1, and for the positive branches we added (1 + cosx)/2 +
(1− cosx)/2 = 1.

Section 19: Proof of Change of Variables The-

orem

Problem *6.

Let Bn(a) denote the closed ball of radius a in Rn, centered at 0,

(a) Show that

v(Bn(a)) = λna
n

for some constant λn. Then λn = v(Bn(1)).
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Before defining the mapping let us find a “natural” 1 coordinate system
for this problem.

Call x = (x1, · · · , xn) and u a unit vector aligned with x. The unit
vector has coordinates

u = (u1, · · · , un),

where

ui =
x · ei
‖x‖

=
xi
a

= cos θi

with θi is the director angle between the vector x and the coordinate
base vector ei.

Since

u21 + · · ·+ u2n = 1,

all ui coordinates are not independent and we can write the last coordi-
nate as

un = ±
√

1− (u21 + · · ·+ u2n−1).

We define the mapping

β : B → Rn

(u1, · · · , un−1, r) 7→ (ru1, · · · , run), (4.0.7)

It is clear that this mapping turns our coordinates into a ball of radius
r, which for 0 ≤ r ≤ a is Bn(a).

1I solved this problem using 4 other methods including generalized polar–spherical
coordinates, recursion formulas and evaluation of Gaussian functions, in my notes on
PDE.
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The Jacobian of this transformation is given by:

Dβ =



r 0 · · · 0 u1

0 r 0 · · · 0 u2

...
. . . . . .

...
...

0 0 · · · r un−1

− ru1
un
− ru2

un
· · · − run−1

un
un



Since un = ±
√

1−
∑n−1

i=1 u
2
i , that is, un is multivalued and we need to

consider two patches. Each patch (due to symmetry) has the same area
and volume. We then only evaluate one patch and duplicate our result.

Let us evaluate detDβ(u, r). For this we perform Gaussian elimination
to put zeroes in the last raw, except for the last entry of that raw. We
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find

detDβ(u, r) =
un
u1

det



ru1
un

0 · · · 0
u21
un

0 r 0 · · · 0 u2

...
. . . . . .

...
...

0 0 · · · r un−1

− ru1
un
− ru2

un
· · · − run−1

un
un



=
un
u1

det



ru1
un

0 · · · 0
u21
un

0 r 0 · · · 0 u2

...
. . . . . .

...
...

0 0 · · · r un−1

0 − ru2
un

· · · − run−1

un

u21+u
2
n

un



=
un
u1

un
u2

det



ru1
un

0 · · · 0
u21
un

0 ru2
un

0 · · · 0
u22
un

...
. . . . . .

...
...

0 0 · · · r un−1

0 0 · · · − run−1

un

u21+u
2
2+u

2
n

un


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That is

detDβ(u, r) =
un
u1

un
u2
· · · un

un−1

det



ru1
un

0 · · · 0
u21
un

0 ru2
un

0 · · · 0
u22
un

...
. . . . . .

...
...

0 0 · · · run−1

un

u2n−1

un

0 0 · · · 0
∑n−1
i=1 u

2
i+u

2
n

un
= 1

un


from which

detDβ(u, r) =
rn−1

un
(4.0.8)

Hence, the volume of the Bn−1(a) ball is given by (recall that there are
two patches with equal volume)

v(Bn(a)) = 2

∫
Bn+(a)

detDβ(u, r)

= 2

∫ a

0

rn−1dr

∫
Bn+(1)

1

un
du1 · · · dun−1

=
2an

n

∫
Bn+(1)

1

un
du1 · · · dun−1

= anλn (4.0.9)

with

λn =
2

n

∫
Bn+(1)

1

un
du1 · · · dun−1 (4.0.10)

(b) Compute λ1 and λ2.

(c) Compute λn in terms of λn−2.

(d) Obtain a formula for λn. [Hint: Consider two cases, according as n is
even or odd.]
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sln. We found the formula

v(Bn(a)) = 2

∫
Bn+(a)

detDβ(u, r)

= 2

∫ a

0

rn−1dr

∫
Bn−1

+ (1)

1√
1−

∑n−1
i=1 u

2
i

du1 · · · dun−1.

=
2an

n

∫
Bn−1

+ (1)

1√
1−

∑n−1
i=1 u

2
i

du1 · · · dun−1.

Let us test this formula with a few simple cases

• If n = 1 (in the one–dimensional space, then

v(B0(a)) =
2a

1
= 2a,

• If n = 2 (in the 2D space)

v(B1(a)) =
2a2

2

∫ 1

−1

1√
1− u21

du1 = πa2.

• If n = 3 (in the 3D space)

v(B2(a)) =
2a3

3

∫ 1

−1

1√
1− u21 − u22

du1du2

=
2a3

3

∫ 1

−1
du1

∫ 1

−1
du2

1√
b2 − u22

where b2 = 1 − u21. The substitution u2 = b sin θ, du2 = b cos θ,
where θ ∈ [−π/2, π/2] provides

v(B2(a)) =
2a3

3

∫ 1

−1
du1

∫ π/2

−π/2

b cos θdθ

b cos θ

=
2a3

3

∫ 1

−1
du1π

=
4πa3

3

which corresponds to the three dimensional volume of a sphere.
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In the last derivation we assumed that the variables u1 and u3 can be
integrated iteratively. That is they are independent variables along or-
thogonal directions. This is not always true and we were lucky in ob-
taining the right answer with a weak assumption. In general we could
have trouble.

In general, let us assume that we are considering the n–dimensional
space. We will assume that the variable of integration r is decoupled
from the rest of the variables (and this is right) there is not dependence
between the radius and any of the polar/azimuthal directions. So we can
write

v(Bn(a)) =
2an

n

∫
Bn−1

+ (1)

1√
1−

∑n−1
i=1 u

2
i

du1 · · · dun−1.

To solve this integral we assume that the denominator is bounded away
from zero, so we can apply Fubini’s rule, and then after we apply the
rule we can take the limit as the denominator (un) goes to zero. Recall
that the domain of integration Bn−1

+ (a) is the manifold of n − 1–tuples
(u1, · · · , un−1) under the mapping

u21 + · · ·+ u2n−1 = 1− u2n,

and since 0 < un ≤ 1 then 1−
∑n−1

i=1 u
2
i > 0.

Let us take the last coordinate un−1 and let it be in the interval un−1 ∈
[−1 + ε, 1− ε], 0 < ε << 1 and write

v(Bn(a)) =
2an

n

∫ 1

−1
dun−1

∫
Bn−1

+ (1)

1√
1−

∑n−1
i=1 u

2
i

du1 · · · dun−2.

with Bn−1
+ = Bn−2

+ × [−1, 1]. Bn−2
+ is the manifold defined by the (n−2)–

tuples (u1, · · ·un−2) such that

u21 + · · ·u2n−2 ≤ 1.
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with un−1 ≥ 0. We rewrite the integral as

v(Bn(a)) = lim
ε→0

2an

n

∫
Bn−2

+ (1)

du1 · · · dun−2

∫ 1−ε

−1+ε

dun−1√
b2 − u2n−1

.

with b2 = 1 −
∑n−2

i=1 u
2
i and make the change of variables un−1 = b sin θ,

du = b cos θ, so

v(Bn(a)) =
2an

n

∫
Bn−2

+ (1)

du1 · · · dun−2
∫ arcsin(1−ε)

arcsin(−1+ε)
dθ

=
2anπ

n

∫
Bn−2

+ (1)

du1 · · · dun−2

=
2anπ

n
v(Bn−2)(1) (4.0.11)

This provides us with the following recursion formula. Starting at n = 1.

v(B0(a)) = 2a

v(B2(a)) =
2a3π

3
v(B0(1)) =

4πa3

3

v(B4(a)) =
2πa5

5
v(B2(1)) =

8π2a5

15

on the other hand, starting at n = 2

v(B1(a)) = πa2

v(B3(a)) =
2a4π

4
v(B1(1)) =

a4π2

2

v(B5(a)) =
2a6π

6
v(B3(1)) =

a6π3

6
.

In general, by simple induction and the recursions above, it is easy to
observe that the formula for the volume of the n–dimensional ball

v(Bn(a)) =
πn/2an

Γ
(
n
2

+ 1
) . (4.0.12)

From equation 4.0.9 we see that

λn =
v(Bn(a))

an
=

πn/2

Γ
(
n
2

+ 1
) (4.0.13)
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Problem *7.

(a) Find the centroid of the upper half–ball

Bn
+(a) = {x|x ∈ Bn(a) and xn ≥ 0}

in terms of λn and λn−1 and a, where λn = v(Bn(1)).

sln. From the definition in exercise 3, we have

ck(B
n
+(a)) =

1

v(Bn
+(a))

∫
Bn+(a)

πk =
I

v(Bn
+(a)

, (4.0.14)

with

I =

∫
Bn+(a)

πk.

We know that half the sphere has half the volume (isn’t this obvious?,
since the density is constant :)) So

v(Bn
+(a)) =

anλn
2

, and so ck(B
n
+(a)) =

2I

anλn
.

Next we evaluate the integral I. For this evaluation we use the change
of variables defined by the function β in the mapping 4.0.7, for which we
already know (see equation 4.0.8 ) that

V (Dβ) =
rn−1

un
.

We should evaluate the integral

I =

∫
Bn+(a)

πk.

and since πk = xk = ruk, then

I =

∫
Bn+(a)

ruk detD(β(u, r))

=

∫ a

0

rndr

∫
Bn+(1)

uk
un
du1 · · · dun−1

=
an+1

n+ 1

∫
Bn+(1)

uk
un
du1 · · · dun−1 (4.0.15)
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Let us will consider two cases

(a) k < n. From equation 4.0.15

I =
an+1

n

∫
Bn+(1)

du1 · · · duk−1duk+1 · · · dun−1
∫ d

c

duk
uk
un

where the integration bounds c and d are to be defined. The ques-
tion of Fubini’s rule always should be addressed. I will assume that
the k–integration can be moved to the end as I did here (and I
could, but will not prove it).

From
∑

i u
2
i = 1, i = 1, · · · , n we have

un =

√√√√1−
n−1∑
i=1

u2i

=

√√√√1−
n−1∑

i=1,i 6=k

u2i − u2k

=
√
b2 − u2k

where

b2 = 1−
n−1∑

i=1,i 6=k

u2i .

This defines the bounds of integration as |uk| ≤ b. That is c = −b
and d = b. Since, uk is odd (recall uk = xk/a )

I =
an+1

n+ 1

∫ d

c

duk
uk
un

=
an+1

n+ 1

∫ b

−b
duk

uk√
b2 − u2k

= 0 (4.0.16)

(b) k = n. Initially, from 4.0.11 we have the recursion

λn+1 =
2π

n+ 1
λn−1. (4.0.17)
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Now, equation 4.0.15 we find

I =
an+1

n+ 1

∫
Bn+(1)

du1 · · · dun−1 =
an+1

n+ 1
λn−1 (4.0.18)

So from equations 4.0.14, 4.0.16 and 4.0.18 we find

ck = δkn
2a

n+ 1

λn−1
λn

= δkn
aλn+1

π λn

where

δkn =

{
1 if i = n
0 if i 6= n

is the Kronecker delta.

Two simple cases (we should start at n ≥ 2).

• n=2 (semi–circle)

c1 = 0

c2 =
2a

3

2

π
=

4a

3π
.

• n=3 (semi–sphere)

c1 = 0

c2 = 0

c3 =
2a

4

π

4π/3
=

3a

8
.

Finally let us express the formula of the centroid in terms of the Γ
function using equation 4.0.13. That is, since

λn =
πn/2

Γ
(
n
2

+ 1
)

then

ck = δkn
2a

n+ 1

π(n−1)/2

πn/2
Γ((n− 1)/2 + 1)

Γ(n/2 + 1)
= δkn

2a

(n+ 1)π1/2

Γ(n/2 + 1/2)

Γ(n/2 + 1)
.

(b) Express c(Bn
+(a)) in terms of c(Bn−2

+ (a)).
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sln. We will only compare the non–zero components.

c(Bn
+(a))

c(Bn−2
+ (a))

=
aλn+1

πλn

πλn−2
aλn−1

=
λn+1λn−2
λnλn−1

and by using equation 4.0.13

c(Bn
+(a))

c(Bn−2
+ (a))

=
π(n+1)/2

Γ(n+1
2

+ 1)

π(n−2)/2

Γ(n−2
2

+ 1)

Γ(n
2

+ 1)

πn/2
Γ(n−1

2
+ 1)

π(n−1)/2

=
(n+ 2)/2

(n+ 3)/2

=
n+ 2

n+ 3

So the relationship looked for is

c(Bn
+(a)) =

(
n+ 2

n+ 3

)
c(Bn−2

+ (a)).
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Chapter 5: Manifolds

Section 22: The Volume of a Parameterized

Manifold

Problem 2.

Let A be open in Rk; let f : A → R be of class Cr; let Y be the graph of
f in Rk+1, parameterized by the function α : A → Rk+1 given by α(x) =
(x, f(x)). Express v(Yα) as an integral.

sln. By definition

v(Yα) =

∫
A

V (Dα).

Now Dα is a (k + 1)× k matrix on the real numbers, defined as follows

αi,j =
∂αi
∂xj

=


δij if j ≤ k

f,i if j = k + 1

with δij being the Kronecker delta, that is the identity matrix up to dimension
k × k and

f,i =
∂f

∂xi
.

Let us call

P = DTr
α ·Dα.

21
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We should evaluate:

detP.

That is we find the dot products between the different columns of Dα. In
the diagonal entry Pii, we dot multiply the i–th column of Dα by itself and
find

Pii = 1 + (f,i)
2.

Off the diagonal we find that the dot product only provides the last two
entries of the column, mainly

Pij = f,if,j

In what follows of this problem I use repeated index notation (Einstein
notation) and the Levi–Civita antisymmetric tensor. We write

detP = εi1i2···ikP1i1P2i2 · · ·Pkik .

To unify notation let us call

Pij = δij + f,if,j

and so

detP = εi1i2···ik(δ1i1 + f,1f,i1)(δ2i2 + f,2f,i2) · · · (δkik + f,kf,ik)

If we are to split the factors in monic terms, each term would have the
form of

εi1i2···ikδj1ij1δj2ij2 · · · δjlijl (f,p1f,ip1 )(f,p2f,ip2 ) · · · (f,pmf,ipm )

Here j1, j2, · · · , jl, p1, p2, pm are a permutation of the set 1, 2, · · · , k I claim
that if m > 1 then the contribution of the sum of the corresponding terms
below is zero. To see why this should be true let us see a simple case. Let
us say that m = 2, then there are k− 2 Kronecker deltas, and in those cases
to avoid a zero we need js = is for all s = 1, k − 2, and only two couple of f
factors. That is

εi1i2···ik(f,λf,iλ)(f,µf,iµ) (5.19)
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k − 2 superindices of the Levi–Civita symbol are fixed and two are variable.
The two superindices which can change are iλ and iµ. For each (iλ, iµ) couple
there is a (iµ, iλ) couple, and they give opposite signs in the sum (if one pro-
duces an odd permutation, the other produces an even permutation). Now,
the interchange of λ by µ will not change the absolute value of equation 5.19.
So all terms cancel pairwise.

The same applies if m > 3. We can always interchange by couples and
see that the terms cancel pairwise.

The only remaining cases are m = 0 and m = 1. For m = 0 we have the
expression

εi1i2···ikδ1i1δ2i22 · · · δkik = 1 (5.20)

since the determinant of the identity matrix is 1, and if m = 1

εi1i2···ikδj1ij1δj2ij2 · · · δjk−1ijk−1
(f,jkf,ijk )

For a non–zero term we require jµ = ijµ , µ = 1, 2, · · · k − 1, and so jk = ijk
by default, and the expansion of the Levi–Civita expression provides

(f,jkf,jk) (5.21)

where jk is the only free index running in the list 1, 2, · · · k. So, combin-
ing 5.20 and 5.21 we find

detP = 1 + (f,jkf,jk).

Which in classical notation is

detP = 1 +
k∑
i=1

(
∂f

∂xk

)2

.

and the expression for the volume v(YD) would then be

v(YD) =

∫ √√√√1 +
k∑
i=1

(
∂f

∂xk

)2

.



24

Problem 3.

Let A be open in Rk; let α : A → Rn be of class Cr; let Y = α(A). The
centroid c(Yα) of the parameterized–manifold Yα is the point Rn whose ith

coordinate is given by the equation

Ci(Yα) =
1

v(Yα)

∫
A

πiV, (5.22)

where πi : Rn → R is the ith projection function.

(a) Find the centroid of the parameterized–curve

α(t) = (a cos t, a sin t) with 0 < t < π

(b) Find the centroid of the hemisphere of radius a in R3. (See Example 4.)

sln.

(a) Let us first find

v(Yα) =

∫
A

V (Dα)

where

D(α) =

[
−a sin t
a cos t

]
and

V (Dα) =

∫ π

0

√
a2(sin2 t+ cos2 t) =

∫ π

0

a = aπ.

(see Example 1, for the general form for a parameterized curve)

Now from the definition of centroid 5.22

C1(Yα) =
1

v(Yα)

∫
A

π1V =
1

πa

∫ π

0

a2 cos tdt = 0

C2(Yα) =
1

v(Yα)

∫
A

π2V =
1

πa

∫ π

0

a2 sin tdt =
2 a2

πa
=

2a

π
.
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(b) From Example 4 we already know that

v(Yα) = 2πa2.

Now, we can see from Example 4 also that

C1(Yα) =
1

v(Yα)

∫
A

π1V =
1

2πa2

∫
A

ax

(a2 − x2 − y2)1/2
dxdy

=
1

2πa2

∫ a

−a
dy

∫ √a2−y2

−
√
a2−y2

ax dx

(a2 − x2 − y2)1/2

= − 1

2πa

∫ a

−a
dy(a2 − x2 − y2)1/2

∣∣∣∣
√
a2−y2

−
√
a2−y2

= 0.

Along the same lines, by changing x by y (due to symmetry) we see that
C2(Yα) = 0. Let us now compute C3(Y (α)). That is

C3(Yα) =
1

v(Yα)

∫
A

π3V =
1

2πa2

∫
A

az

(a2 − x2 − y2)1/2
dxdy

=
1

2πa2

∫
A

a dx dy

=
1

2πa2
aπa2

=
a

2
. (5.23)

Problem 4.

The following exercise gives a strong plausibility argument justifying our
definition of volume. We consider only the case of a surface in R3, but a
similar result holds in general.

Given three points a, b, c in R3, let C be the matrix with columns b−a
and c−a. The transformation h : R2 → R3 given by h(x) = C ·x+a carries
0, e1, e2 to a, b, c, respectively. The image Y under h of the set

A = {(x, y)|x > 0 and y > 0 and x+ y < 1}

is called the (open) triangle in R3 with vertexes a, b, c. See Figure 22.5. The
area of the parameterized–surface Yh is one–half the area of the parallelepiped
with edges b− a and c− a, as you can check.
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Now let Q be a rectangle in R2 and let α : Q→ R3; suppose α extends to
a map of class Cr defined in an open set containing Q. Let P be a partition
of Q. Let R be a sub–rectangle determined by P , say

R = [a, a+ h]× [b, b+ k].

Consider the triangle ∆1(R) having vertexes

α(a, b), α(a+ h, b), and α(a+ h, b+ k)

and the triangle ∆2(R) having vertexes

α(a, b), α(a, b+ k), and α(a+ h, b+ k).

We consider these two triangles to be an approximation to the “curved rect-
angle” α(R)′′. See Figure 22.6. We then define

A(P ) =
∑
R

[v(∆1(R)) + v(∆2(R))],

where the sum extends over all sub–rectangles R determined by P . This
number is the area of a polyhedral surface that approximations α(Q). Prove
the following:

Theorem: Let Q be a rectangle in R2 and let α : A → R3 be a map of
class Cr defined in an open set containing Q. Given ε > 0, there is a δ > 0
such that for every partition P of Q of mesh less than δ,∣∣∣∣A(P )−

∫
Q

V (Dα)

∣∣∣∣ < ε.

Proof.

(a) Given points x1, · · · ,x6 of Q, let

Dα(x1, · · · ,x6) =

 D1α1(x1) D2α1(x4)
D1α2(x2) D2α2(x5)
D1α3(x3) D2α3(x6)


Then Dα is just the matrix Dα with its entries evaluated at different
points of Q. Show that if R is a sub–rectangle determined by P , then
there are points x1, · · · ,x6 of R such that

v(∆1(R)) =
1

2
V (Dα(x1, · · · ,x6)) · v(R).

Prove a similar result for v(∆2(R)).
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sln. The following solution was taking from Yan Zeng’s document 2.
The reader needs Adobe Flash Player installed to be able to access the
information there.

v(∆1(R)) =

∫
A

V (Dα),

where A is the (open) triangle in R2 with vertexes (a, b), (a + h, b) and
(a+ h, b+ k). V (Dα) is a continuous function on the compact set A, so
it achieves its maximum M and minimum m on A. Let x1,x2 ∈ A such
that V (Dα(x1)) = M and V (Dα(x2)) = m, respectively. Then

v(A) ·m ≤ v(∆1(R)) ≤ v(A).M.

By the intermedian value theorem of a continuous function, and consid-
ering the segment connecting x1 and x2, we can find a point ξ1 ∈ A such
that V (Dα(ξ1))v(A) =

∫
A
V (Dα). This shows that there is a point ξ1

of R such that

v(∆1(R)) =

∫
A

V (Dα) = V (Dα(ξ1))v(A) =
1

2
V (Dα(ξ1)) · v(R).

A similar result for v(∆2(R)) can be proved similarly. Here we find a
second point ξ2.

I like Yan Zeng’s solution to the problem. I still do not get why Munkres
require six different points in the rectangle R.

(b) Given ε > 0, show one can choose δ > 0 so that if xi,yi ∈ Q with
|xi − yi| < δ for i = 1, · · · , 6, then

|V (Dα(x1, · · · ,x6))− V (Dα(y1, · · · ,y6))| < ε.

sln. V (Dα) is a continuous function is uniformly continuous on the
compact set Q.

(c) Prove the theorem.

2 http://www.docin.com/p-306958076.html

http://www.docin.com/p-306958076.html
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sln.∣∣∣∣A(P )−
∫
Q

V (Dα)

∣∣∣∣ ≤ ∑
R

∣∣∣∣v(∆1(R)) + v(∆2(R))−
∫
R

V (Dα)

∣∣∣∣
=
∑∣∣∣∣12[V (Dα(ξ1(R))) + V (Dα(ξ2(R)))]v(R)−

∫
R

V (Dα)

∣∣∣∣
≤
∑
R

∫
R

∣∣∣∣V (Dα(ξ1(R))) + V (Dα(ξ2(R)))

2
− V (Dα)

∣∣∣∣
≤ 1

2

∑
R

∫
R

|V (Dα(ξ1(R)))− V (Dα)|+

|V (Dα(ξ2(R)))− V (Dα)|

Given ε > 0, there exists a δ > 0 such that if x1,x2 ∈ Q with |x1−x2| <
δ, we must have V ((Dα(x1))−V (Dα(x2))| < ε

v(Q)
. So for every partition

P of Q of mesh less than δ,∣∣∣∣A(P )−
∫
Q

V (Dα)

∣∣∣∣ <∑
R

∫
R

ε

v(Q)
= ε.

Section 23: Manifolds in R3

Problem 3.

(a) Show that the unit circle S1 is a 1–manifold in R2.

sln. We can cover the circle with the following four patches, each half
a circle and with an overlapping of a quarter of circle between patches.

αi : R → R2

t 7→ (cos t, sin t)

where the domain Ui of αi is defined as (iπ/2, (2 + i)π/2), i = 1 · · · 4,
and the patch Vi is the circular arc corresponding to the angle swept by
Ui. It is easy to verify the three conditions to be a manifold for each of
the three patches. That is

(i) αi is of class C∞.
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(ii) α−1i : Vi → Ui is of class C∞, and

(iii) Dα(t) = (− sin t, cos t) has rank 1.

(b) The problem of letting the circle close (or in other words to let the domain
interval be of length 2π), is that the point corresponding to 0 and 2π is
the same, and so α−1 can not be continuous at that point, since the
inverse image of a neighborhood of that point can be as closed to 2π as
we want, or as closed to 0 as we want. Topologically we can see it like
this. Take the open set [0, 2π), in H1. The image under the mapping α
is the whole circle which is a closed set in the relative topology of the set
S1 in R2. Hence, α−1 can not be continuous.

Problem 6.

(a) Show that I = [0, 1] is a 1–manifold in R.

sln. We show that I is a manifold with boundary.

Let U = [0, 1) which is open in H1. We use two coordinate patches.

α1 : U → V1 = [0, 1)

x 7→ x

and

α2 : U → V2 = (0, 1]

x 7→ 1− x

Clearly I = V1 ∪ V2, and both α1 and α2 satisfy the manifold conditions.
Note that the purpose of the second mapping α2 is just to add the number
1 missing from V1. The mapping could be defined in smaller set [0, s)
with 0 < s < 1.

(b) Is I × I a 2–manifold in R2 ? Justify your answer. This problem really
belongs to the next section. It is hard to prove without the definitions
and properties of the next section.
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sln. The answer is: “no”. The reason is because of the corners. To
better understand the reasons let me show first what type of unit squares
are manifolds, and then show why the answer is “no”.

• The open unit square is a manifold. The identity mapping would
be the only coordinate patch needed.

• The square A = (0, 1) × [0, 1) is a manifold. Again, the identity
mapping from H1 to itself satisfy the manifold definition.

• The square B = (0, 1) × (0, 1] is a manifold. Here the coordinate
patch is given by

α : (0, 1)× [0, 1) → (0, 1)× (0, 1]

(x, y) 7→ (x, 1− y).

• The union A ∪ B is a manifold. The two patches in the previous
two items cover this union.

• The square C = [0, 1)× (0, 1). The mapping

α : (0, 1)× [0, 1) → [0, 1)× (0, 1)

(x, y) 7→ (y, x).

serves as the only coordinate patch.

• The square D = (0, 1]× (0, 1). The mapping

α : (0, 1)× [0, 1) → (0, 1]× (0, 1)

(x, y) 7→ (1− y, x).

The union C ∪ D is also a manifold and the two previous patches
serve to cover this union.

Note that in all these sets no corner of the square is included. Any
set with a corner, such as for example [0, 1) × [0, 1) can not be a
manifold. If the manifold, is a manifold with boundary, then the
boundary will come from the y = 0 line (the x–axis). Pick any
point in the boundary which maps to a corner. If we approach
that point from the left we will be approaching the corner from
a given direction. If we change direction in the domain (say that
we approach the point from the right), then we will approach the
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Figure 5.1: Figure for problem 1

y

z

x

• (b, 0, 0)
a

image under α from the other side of the corner. That is from
a side which is 90 degrees out of phase with the first direction. A
directional derivative can not depend on the sign where we approach
the point to. So there is not differentiable function which satisfies
a mapping with the manifold pre–requisites.

Section 24: The Boundary of a Manifold

Problem 1.

1. Show that the solid torus is a 3–manifold, and its boundary is the torus
T . (See the exercises 17). [Hint: Write the equation for T in Cartesian
coordinates and apply Theorem 24.4.]

Figure 5.1 shows an sketch of the torus. Referring to Problem 7 of section
17, the solid tours is the image under the cylindrical coordinate transforma-
tion

g(r, θ, z) = (r cos θ, r sin θ, z),

for all (r, θ, z) satisfying

(r − b)2 + z2 ≤ a and 0 ≤ θ ≤ 2π.

The solid torus is generated by rotation the vertical circle centered at
(b, 0, 0) with radius a an angle of 2π. This is given, in Cartesian coordinates,
by the points (x, y, z) such that

√
x2 + y2 − b)2 + z2 ≤ a.
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We define f as follows:

f : R3 → R
(x, y, z) 7→ f(x, y, z) = a− (

√
x2 + y2 − b)2 − z2

So the points for which f(x, y, z) = 0 are the surface of the torus while those
where f(x, y, z) ≥ 0 are the volume of the torus. We see that f is of class C∞

in the set points such that f(x, y, z) = 0 and Df(x, y, z) has rank 1, since

∂f

∂x
= −2(

√
x2 + y2 − b) x√

x2 + y2
= −2x+

2xb√
x2 + y2

similarly

∂f

∂y
= −2y +

2yb√
x2 + y2

and ∂f/∂z = −2z so

Df(x, y, z) =


−2x+ 2xb√

x2+y2

−2y + 2yb√
x2+y2

−2z


To show that Df is of rank one for (x, y, z) such that f(x, y, z) = 0, we
should show that the tree components of Df can not be simultaneously 0,
for which if this happens then

z = 0, x =
xb√
x2 + y2

, and y =
yb√
x2 + y2

so x2 + y2 = b2, z = 0 and then from f(x, y, z) = 0 implies that a = 0 which
is assumed to be strictly positive.

So the solid torus N is a manifold of rank 3 with boundary T = ∂N a
2–manifold.

To appreciate the power of this theorem let us consider a different ap-
proach to prove that the surface and solid torus are manifolds. We can use to
parameters to characterize the surface of a torus. These are the azimuth an-
gle of a circular cross-section, and the angle along the circular cross–section.
Figure 5.2 shows the representation of the two parameters. The azimuthal
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Figure 5.2: Figure for problem 1: parameterization based on two angles.
The azimuthal angle ϕ provides the location of the circular cross-section.
The angle θ, locates the point within the circular cross–section.

y

z

x

θ
.

•(x, y, z)ϕ

parameter ϕ and the circular angle θ. The parameterization can be written
as

(x, y, z) = (b+ a cos θ) cosφ, (b+ a cos θ) sinφ, a sin θ).

So formally we can write

α : R2 → R3 (5.24)

(ϕ, θ) ∈ A 7→ ((b+ a cos θ) cosφ, (b+ a cos θ) sinφ, a sin θ) (5.25)

with A = [0, 2π)× [0, 2π). To cover the torus in a unique way we need several
patches, since at the points 0 and 2π the inverse of the mapping function is
not continuous. It is not hard to prove that this mapping is differentiable
and the inverse is continuous for small (smaller than 2π length) intervals.
Also that the differential is of rank 2. However, this representation does not
tell us anything about the solid body, and without using the resources in
Theorem 24.4 it seems hard to come up with an easy proof.

Problem 2.

2. Prove the following:
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Theorem. let f : Rm+k → Rm 3 be of class Cr. Let M be the set of
all x such that f(x) = 0. Assume that M is non–empty and that Df(x) has
rank m for x ∈ M . Then M is a k–manifold without boundary in Rm+k.
Furthermore, if N is the set of all x for which

f1(x) = · · · = fm−1(x) = 0 and fm(x) ≥ 0,

and if the matrix

∂(f1, · · · , fm−1)
∂x

has rank m−1 at each point of N , then N is a k+1 manifold, and ∂N = M .

sln. From Yang Zeng’s solution.

Lemma 1. Let f : Rm+k → Rm be of class Cr. Assume Df has rank
n at a point p, then there is an open set W ⊂ Rm+k and a Cr function
G : W → Rm+k with Cr inverse such that G(W ) is an open neighborhood of
p and f ◦G : W → Rn is the projection mapping to the first m coordinates.

proof. We write any point x ∈ Rm+k as (x1,x2) with x1 ∈ Rm, and
x2 ∈ Rk. We know from the hypothesis that Df has rank m. Without
loss of generality we can assume that the independent columns of the matrix
Df are the first columns, otherwise we could permute the columns until
that happens. Since any permutation P has a determinant equal to (−1)◦(P )

where ◦(P ) is the order of the permutation, the non–zero hypothesis for the
Dx1 is still valid for the composition of the permutation with the function
f .

Define F (x) = (f(x),x2), then

DF =

[
Dx1f Dx2f

0 Ik

]
.

So, detDF (p) = detDx1f(p) 6= 0. By the inverse function theorem, there
is an open set U of Rm+k containing p such that F carries U in a one–to–one

3 I use “m” instead of “n′′ because it is more convenient for the solution of Problem 4
below
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fashion onto the open set W of Rm+k and its inverse is of class Cr. Denote
the projection

π : Rm+k → Rm

x 7→ x1

Then

f ◦G(x) = (π ◦ F ) ◦G(x) = π ◦ (F ◦G)(x) = I ◦ π(x) = π(x).

on W .
With this we proceed to prove the theorem.
Pick p ∈ M . By the preceding lemma there is a Cr diffeomorphism G

between an open set W of Rm+k and an open set U of Rm+k containing p,
such that f ◦G = π on W .

So, by calling, the m–coordinate vector

0m =

 0
...
0


we have

U ∩M = {x ∈ U : f(x) = 0}
= G(W ) ∩ (f ◦G ◦G−1)−1({0m})
= G(W ) ∩ (π ◦G−1)−1({0m})
= G(W ) ∩G ◦ π−1({0m})
= G(W ∩ π−1({0m}))
= G(W ∩ {0m} × Rk)

Define α(x1, · · · , xk) := G(0m, x1, · · · , xk). So α is a k–dimensional coor-
dinate patch on M about p. Since p was arbitrarily chosen, we have proved
that M is a k–manifold without boundary in Rm+k.

Now, ∀p ∈ N = {x : f1(x) = · · · fm−1(x) = 0, fm(x) ≥ 0},
there are two cases:

1. fm(p) > 0. Let us define F := (f1, · · · fm−1), so by an argument similar
to that of M , we can find a Cr diffeomorphism G1 between an open set
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W of Rm+k containing p such that F ◦G1 = π. Here π is the projection
mapping to the first (m− 1) coordinates

U ∩N = U ∩ {x : f1(x) = · · · fm−1(x) = 0} ∩ {x : fm(x) ≥ 0}
= G1(W ) ∩ {x : f1(x) = · · · fm−1)(x) = 0} ∩ {x : fm(x) ≥ 0}
= G1(W ) ∩ (F ◦G1 ◦G−11 )−1({0}m−1) ∩ {x : fm(x) ≥ 0}
= G1(W ) ∩ (π1 ◦G−11 )−1({0}m−1) ∩ {x : fm(x) ≥ 0}
= G1(W ) ∩G1 ◦ π−11 ({0}m−1) ∩ {x : fm(x) ≥ 0}
= G1(W ) ∩G1({0}m−1 × Rk+1) ∩ {x : fm(x) ≥ 0}
= G1

(
W ∩ ({0}m−1 × Rk+1)

)
∩ {x : fm(x) ≥ 0}

When U is sufficiently small, by the continuity of fm and the fact that
fm(p) > 0, we can assume fm(x) > 0, ∀x ∈ U . so

U ∩N = U ∩ {x : f1(x) = · · · fm−1(x) = 0, fm(x) > 0}
= G1

(
W ∩ ({0}m−1 × Rk+1)

)
∩ {x : fm(x) > 0}

= G1

(
W ∩ ({0}m−1 × Rk+1)

)
∩G1 ◦G−11 {x : fm(x) > 0}

= G1

(
W ∩ ({0}m−1 × Rk+1) ∩G−11 {x : fm(x) > 0}

)
This shows that β(x1, · · · , xk+1) := G1(0m−1, x1, · · · , xk+1) is a (k+1)–
dimensional manifold patch on N about p.

2. fm(p) = 0. Here we note that p is necessarily in M . So Df(p) is of
rank m and there is a Cr diffeomorphism G between an open set W of
Rm+k and an open set U of Rm+k containing p, such that f ◦G = π on
W . So

U ∩N = {x ∈ U : f1(x) = · · · fm−1(x) = 0, fm(x) ≥ 0}
= G(W ) ∩ (f ◦G ◦G−1)−1({0m−1} × [0,∞))

= G(W ) ∩ (π ◦G−1)−1({0m−1} × [0,∞))

= G(W ) ∩G(π−1)({0m−1} × [0,∞))

= G(W ∩ π−1({0m−1} × [0,∞))

= G(W ∩ 0m−1 × [0,∞)× Rk).
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This shows that γ(x1, · · · , xk+1) := G(0m−1, xk+1 ≥ 0, x1, · · · , xk)) is a
(k + 1)–dimensional coordinate patch on N about p.

In summary, we have shown that N is a (k+1)–manifold. Lemma 24.2
shows that ∂N = M .

Comments Interestingly functions of the type f(x) = 0, for x ∈ Rm

define hyper–surfaces in the m–dimensional space of rank at most, m − 1.
For example a function f(x1, x0) = 0 defines a curve in the two–dimensional
space, a function f(x1, x2, x3) define a surface in the three–dimensional space.
Then to define a hypervolume we change the symbol “=” by the symbol “≥”
yielding f(x) ≥ 0. We learned this from linear algebra or linear optimization
by selecting lines, planes and hyperplanes.

We also know that the intersection of surfaces yields curves. In this way
saying F : Rm → Rk is like saying that we have a set of hyper–surfaces
F = (f1, · · · , fk) of rank at most m− 1 each, but as the number of surfaces
start intersecting the rank of the intersection starts reducing at most by 1.
So the rank of the resulting surface is at most m− k.

This is a powerful theorem and the rest of exercises on this section are
applications of this theorem.

Problem 4.

Show that the upper hemisphere of Sn−1(a), defined by the equation

En−1
+ (a) = Sn−1(a) ∩Hn

is an n− 1 manifold. What is its boundary?

sln. Let us write n = 2 + (n − 2) = m + k, with m = 2 and k = n − 2 in
the Theorem shown in exercise 2.

Let us define

f : Rm+k → R2

x 7→ (f1, f2) = (‖x‖ − a2, xn),

We have the following associations

M = {x : f1(x) = 0 ∧ f2(x) = xn = 0}
En−1

+ (a) = N = {x : f1(x) = 0 ∧ f2(x) = xn ≥ 0}
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Now

Df =

(
2x1 · · · 2xn−1 2xn
0 · · · 0 1

)
The matrix Df has rank 2 at M , where xn = 0, but at least one of the other
components xi, 1 < i < n should be different from zero (since the sum of all
squares is a2) so (using the Theorem in exercise 2) M is a k = n−2–manifold
without boundary in Rn.

Now,

∂f1
∂x

= (2x1, · · · 2xn)

has rank 1, since not all components could be zero at the same time, so again
using the Theorem on exercise 2 we see that N is an n − 1 manifold such
that ∂N = M = Sn−2(a).

Section 25: Integrating a Scalar Function Over

a Manifold

Before going to the Problem I want to go over the Definition of “measure
zero” set. I find it confusing as well as the proof of equivalence right after it.

Definition. Let M be a compact k–manifold in Rn, of class Cr. A subset
D of M is said to have measure zero in M if it can be covered by countable
many coordinate patches αi : Ui → Vi such that the set

Di = α−1(D ∩ Vi) (5.26)

has measure zero in Rk for each i.
First, there is a typo in equation 5.26. The mapping α is missing its

subindex i. Let us rewrite it correctly:

Di = α−1i (D ∩ Vi) (5.27)

Second, let us work the equivalence after the definition. Munkres says: “ An
equivalent definition is to require that for any coordinate patch α : U → V ,
on M , the set α−1(D∩V ) has measure zero for each i. And this follows from
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the fact that the set α−1i (D∩ V ∩ Vi) has measure zero because it is a subset
of Di, and that α−1 ◦ αi is of class Cr. ”

I find Munkres proof confusing, so I want to rephrase it. Being an equiv-
alence, let us prove it in two steps. The obvious implication is that if for
any coordinate patch α : U →M , α−1(D ∩ V ) has measure zero in Rk, then
in particular for each set of {αi} countable coordinate patches which form a
covering of M the measure of Di = α−1(D ∩ Vi) is zero. The, not obvious
implication is this. Assume that for each countable covering patches of M
as defined above, we have that the measure of Di is zero. Then given any
arbitrary patch α : U → V , we want to prove that the measure of α−1(D∩V )
is zero. We can create a new set with all countable patches αi and the patch
α. Let us index this new patch as αJ . Adding one patch to a countable set,
will leave it countable. So we can apply the hypothesis of the new countable
set to say that α−1(D ∩ VJ) = α−1(D ∩ V ) is of measure zero.

Problem 2.

Let α(t), β(t), f(t) be real–valued functions of class C1 on [0, 1], with f(t) > 0.
Suppose M is a 2–manifold in R3 whose intersection with the plane z = t is
the circle

(x− α(t))2 + (y − β(t))2 = (f(t))2; z = t (5.28)

if 0 ≤ t ≤ 1, and is empty otherwise.

(a) Set up an integral for the area of M . [Hint: Proceed as in Example 2.]

sln. We define the following patch from A = (0, 2π) × [0, 1] into our
manifold M . Note that from equation 5.28 we find that

f(t) cos θ = x− α(t)

f(t) sin θ = y − β(t)

from which we can map

x = α(t) + f(t) cos θ

y = β(t) + f(t) sin θ
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and define the patch

γ(θ, t) = (α(t) + f(t) cos θ, β(t) + f(t) sin θ, t)

By definition

v(M) =

∫
A

V (Dγ)

and

Dγ =

 −f(t) sin θ α′(t) + f ′(t) cos θ
f(t) cos θ β′(t) + f ′(t) sin θ

0 1

 .
To simplify notation let us define

c = cos θ, s = sin θ

and

g2(t) = (Dγ)22

= (α′(t) + f ′(t)c)2 + (β′(t) + f ′(t)s2 + 1

= 1 + f ′2(t) + α′2(t) + β′(t) + 2α′(t)f ′(t)c+ 2β′(t)f ′(t)s,

then

V (Dγ) =

(
det

[
f 2(t) f(t)(β′(t)c.α′(t)s)

f(t)(β′(t)c− α′(t)s) g2(t)

])1/2

= (f 2(t)g2(t)− f 2(t)(β′2(t)c2 + α′2(t)s2))1/2

= f(t)
√

(g2(t)− β′2(t)c2 − α′2(t)s2)
= f(t)

√
(1 + f ′2(t) + α′2(t)c2 + β′2(t)s2 + 2α′(t)f ′(t)c+ 2β′(t)f ′(t)s

= f(t)
√

1− f ′2(t) + (α′(t)c+ f ′(t))2 + (β′(t)s+ f ′(t))2

The integral to compute the volume is then given by

v(M) =

∫ 1

0

dt

∫ 2π

0

dθf(t)
√

1− f ′2(t) + (α′(t)c+ f ′(t))2 + (β′(t)s+ f ′(t))2

(5.29)
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Before proceeding to the next part of the exercise, let us check our answer
for the simplest case

α(t) = const

β(t) = const

f 2(t) = a2 − t2

So,

2f(t)f ′(t) = −2t⇒ f ′(t) = − t

f(t)

The evaluation of 5.29 turns out into

v(M) =

∫ 1

0

dt

∫ 2π

0

dθf(t)
√

1 + f ′2(t) (5.30)

=

∫ 1

0

dt

∫ 2π

0

dθf(t)
√

1 + t2/f 2(t)

=

∫ 1

0

dt

∫ 2π

0

dθ
√
t2 + f 2(t)

=

∫ 1

0

dt

∫ 2π

0

dθ a this is good news

= 2πa

We do not get 4πa2 because t ∈ [0, 1]. If |t| < a we would get 4πa2 as in
example 2.

(b) Evaluate when α and β are constant and f(t) = 1 + t2.

sln. From f(t) = 1 + t2 we find f ′(t) = 2t, and from 5.30

v(M) =

∫ 1

0

dt

∫ 2π

0

dθf(t)
√

1 + f ′2(t)

=

∫ 1

0

dt

∫ 2π

0

dθ(1 + t2)
√

1 + 4t2

= 2π

∫ 1

0

dt(1 + t2)
√

1 + 4t2

= ≈ 13.1022.
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(c) What form does the integral take when f is constant and α(t) = 0 and
β(t) = at? (This integral cannot be evaluated in terms of the elementary
functions.)

sln. If f is constant, α(t) = 0 and β(t) = at, then from 5.29

v(M) =

∫ 1

0

dt

∫ 2π

0

dθf
√

1 + (a sin θ + f)2

= f

∫ 2π

0

√
1 + (a sin θ + f)2 dθ

Problem 3.

Consider the torus T of Exercise 7 of §17.

(a) Find the area of this torus. [Hint: The cylindrical coordinate transfor-
mation carries a cylinder onto T . Parameterize the cylinder using the
fact that its cross–section are circles.

Let us rewrite parameterization 5.24 for the torus T

α(θ, ϕ) = (b+ a cos θ) cosϕ, (b+ a cos θ) sinϕ, a sin θ) (5.31)

Then

Dα =

 −a sin θ cosϕ − sinϕ(b+ a cos θ)
−a sin θ sinϕ cosϕ(b+ a cos θ)

a cos θ 0


so

V (Dα) = (det[(Dα)TDα] = det

[
a2 0
0 (b+ a cos θ)2

]
)1/2 = a(b+ a cos θ).

and so

v(M) =

∫
A

a(b+ a cos θ) = 2πa

∫ 2π

0

(b+ a cos θ)dθ = 2πa(2πb) = 4π2ab.
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(b) Find the area of that portion of T satisfying the condition x2 + y2 ≥ b2.

It seems obvious that this corresponds to half of the surface. That is
2π2ab, however this is tricky. The inside of the donut has less surface
than the outside.

The outside comes from integrating only θ in the interval [−π/2, π/2].
Note that in parameterization 5.31 this corresponds to values of x and y
larger than b.

We have

v(M) = 2πa

∫ π/2

−π/2
(b+ a cos θ)dθ = 2πa(2a+ πb) = 2π2ab+ 4πa2.

Similarly the inner part of the donut is between the angles θ ∈ [π/2, 3π/2].
Note that in parameterization 5.31 this corresponds to values of x and y
smaller than b. So,

v(M) = 2πa

∫ 3π/2

π/2

(b+ a cos θ)dθ = 2πa(−2a+ πb) = 2π2ab− 4πa2.

So it is interesting that the surface of a sphere with radius r = a is what
is the excess of area in the outside, or the defect area in the inside.

Problem 4.

Let M be a compact k–manifold in Rn. Let h : Rn → Rn be an isometry;
let N = h(M). Let f : N → R be a continuous function. Show that N is a
k–manifold in Rk, and ∫

N

fdV =

∫
M

(f ◦ h)dV.

Conclude that M and N have the same volume.

sln. Solution, from Yang Zeng’s document.
We start by showing that N is a k–manifold in Rn.
Let {αj} be a family of coordinate patches that covers M . We show that

{h ◦ αj} is a family of coordinate patches that covers N .
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Each isometry is a diffeomorphism (the opposite is not always true). That
is if if |h(x) − h(y)| = |x − y| then whatever is done in one domain does
not changes distances in the other domain. Theorem 20.6 indicates that each
isometry is an orthogonal transformation followed by a translation. That is

h(x) = Ax+ p.

So the differential of h is Dh = A and since A is orthogonal
Now, let the family of coordinate patches {αj} cover the manifold M .

That is

M ⊂ ∪i αi(Ui) = ∪Vi,

so

N = h(M) ⊂ ∪i(h ◦ αi)(Ui)

so the family {h◦αj} covers N and since h is a diffeomorphism we can assure
that this family is an atlas covering N . Hence, N is a manifold.

To evaluate the volume we follow Zeng. Supprose φ1, · · ·φl is a partition
of unity on M that is dominated by {αj}, then φ1 ◦ h−1, · · ·φl ◦ h−1 is a
partition of unity on N that is dominated by h ◦ αj. I prove this.

We want to show the three attributes under the Lemma 25.2. That is:

(a) φi ◦ h−1 ≥ 0.

Since φi is a partition of unity, then for all x ∈ Rn φ(x) ≥ 0. In particular
φ ◦ h−1(x) ≥ 0. for each x ∈ Rn.

(b) Since, for each i, the support of φi is compact and there is a coordinate
patch αi : Ui → Vi belonging to the given covering such that

((Support φi) ∩M) ⊂ Vi,

then there is a coordinate patch h ◦ αi such that

((Support h ◦ φi) ∩N) ⊂ Wi,

(c) ∑
φi ◦ h−1(x) =

∑
φi(y)

with y = h−1(x) ∈ Rn. Hence by the property (3) of Lemma 25.2,∑
φi ◦ h−1(x) = 1.
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We then showed that the family {h ◦ φ−1i } is a partition of unity on N
dominated b y {h ◦ αj}.

Let us now evaluate the integral∫
N

f dV =
l∑

i=1

∫
N

(φi ◦ h−1)f dV

=
l∑

i=1

∫
IntUi

(φi ◦ h−1 ◦ h ◦ αi)(f ◦ h ◦ αi)V (D(h ◦ αi))

=
l∑

i=1

∫
IntUi

(φi ◦ αi)(f ◦ h ◦ αi)V (Dαi)

=
l∑

i=1

∫
M

φi(f ◦ h) dV

=

∫
M

(f ◦ h) dV.

In particular, by setting f ≡ 1, we get v(N) = v(M).

Problem 5.

(a) Express the volume of Sn(a) in terms of the volume Bn−1(a). [Hint:
Follow the pattern of Example 2.]

sln, method 1. We can write

Sn(a) = {(x1, · · · , xn+1) , x
2
1 + · · ·+ x2n+1 = a2}

= {(x1, · · · , xn−1) , x21 + · · ·+ x2n−1 = a2 cos2 θ}
×{(xn, xn+1) , x

2
n + x2n+1 = a2 sin2 θ}

(this equality is easy to show and I will omit its proof)

Then we parameterized the sphere based on the single parameter θ which
we integrate between 0 and π/2. That is

v(Sn(a)) =

∫ π/2

0

v(Sn−2(a cos θ)) v(S1(a sin θ))Jdθ
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The product of the two volumes is taken because we are integrating over
cross product of independent spaces (for each fixed θ). The Jacobian
J = a comes from the transformation from rectangular coordinates to
polar (a, θ) coordinates. To get this Jacobian requires a good amount of
work. It is obvious for 2D when we say that if x21 + x22 = a2, x1 = a cos θ
and x2 = a sin θ, then the Jacobian

J = det

(
∂(x1, x2)

∂(a, θ)

)
= a.

For higher dimensions the work is more complicated.

We then have,

v(Sn(a)) = a

∫ π/2

0

v(Sn−2(a cos θ)) 2π(a sin θ))dθ

= 2πa

∫ a

0

v(Sn−2(ρ))dρ

= 2aπv(Bn−1(a)).

with the substitution ρ = a cos θ, dρ = −a sin θdθ, and recognizing that

v(Bn−1(a)) =

∫ a

0

v(Sn−2(ρ))dρ. (5.32)

This integral is easy to see as thinking that an onion is the union of all
its concentric shells.

To verify the result let us consider a few cases.

• For n = 2

v(S2(a)) = 4πa2,

2πaB1(a) = (2πa)(2π a) = 4πa2

• For n = 3

v(S3(a)) = 2π2a3,

2πaB2(a) = (2πa)(π2 a2) = 2π2a3
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• and for n = 4

v(S4(a)) =
8

3
π2a4,

2πaB3(a) = (2πa)(
4

3
πa3) =

8

3
π2a3

So,

v(Sn(a))

v(Bn−1(a))
= 2πa. (5.33)

sln, method 2. Let us define the coordinate patch

α : Rn → Rn+1

(x1, · · ·xn) = (x1, · · ·xn, f(x1, · · · , xn)) (5.34)

with

f(x1, · · ·xn) = ±

√√√√a2 −
n∑
i=1

x2i

Then,

Dα =


1 0 · · · 0
0 1 · · · 0
...

. . .
...

...
0 · · · · · · 1
f,1 · · · · · · f,n


where

f,j =
∂f

∂xj
= ∓ xj√

a2 −
∑n

i=1 x
2
i

(5.35)

So

A = (Dα)T (Dα) =


1 + f 2

,1 f,1f,2 · · · f,1f,n
f,1f,2 1 + f 2

,2 · · · f,2f,n
...

...
. . .

...
f,1f,n · · · · · · 1 + f 2

,n


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Before we evaluate the determinant, we see that for n = 1, 2, 3 the com-
putation is trivial and yields

detA = 1 +
n∑
i=1

f 2
,i. (5.36)

We show that this is the case in general.

To evaluate the determinant of this matrix we observe that any entry
has the form of

aij = δij + f,if,j,

and using the index notation for the determinant, we see that

detA = εi1···ina1i1 · · · anin
= εi1···in(δ1i1 + f,1f,i1) · · · (δnin + f,nf,in)

= εPQ
∑
P,Q

∏
P,Q

δIPf,If,Q

Where P and Q are all possible two ordered partitions of the set 1, · · · , n,
and I = (1, · · · , n).

Here

δIP = δ1i1 · · · δkik , P = (i1 · · · ik)
f,Q = f,j1 · · · f,jn−k , Q = (j1, · · · j,n−k).

We will add these partitions according to the cardinal number #P . If
#P = n then P is a permutation of I. Any permutation of P of I that
is not the identity will produce some δij = 0, so the only contribution
to the sum of permutations of #P = n comes from the identity and this
contribution is 1, since the f,Q does not even enter into the picture (Q is
the empty set φ).

Next let us assume #P = n − 1. Then #Q = 1, so each term in this
collection will have n− 1 factors of δ’s and one factor of the type f,if,j.
If i 6= j then one of the deltas is of the form δmn = 0 with m 6= n, since
if all of them roll along the diagonal, the reminding i has to be that in
the set Q. The total contributions for this case (#P = n−1) is given by

n∑
i=1

f 2
,i
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We used equation 5.35

If #P = n − 2, so #Q = 2, then. For the δ not to be zero, all the P
members should be images of the identity, but 2 Q members are free to
be permuted. Half of the permutations of those two members is even and
half is odd. From the definition of the antisymmetric tensor, this brings
the sum to 0.

If, in general, #P < n−1, #Q > 2, we see that half of the permutations
of those elements of Q are even and half are odd. This yields a total sum
of 0.

We found then that

detA = 1 +
n∑
i=1

f 2
,i = 1 +

n∑
i=1

x2i
a2 −

∑n
j=1 x

2
j

=
a2

a2 −
∑n

i=1 x
2
i

(5.37)

as indicated in equation 5.36.

From the theory of manifolds, the volume surface volume can be com-
puted as

v(Sn(a)) = 2

∫
Bn(a)

a√
a2 −

∑n
i=1 x

2
i

The 2 comes about because the two patches for ± in the function f .
That is the upper and lower hemisphere, which have the same volume.

To evaluate this integral we assume that we can apply Fubini’s rule.
When the denominator goes to zero, the function is not bounded and
hence the Fubini’s rule will be invalid. Instead we assume that the de-
nominator is bounded away from zero (that is, we are not yet in the
sphere but inside) and apply Fubini’s rule. Then we can take the limit
as we approach the sphere after Fubini’s rule.

That is,

v(Sn(a)) = 2 lim
ε→0

∫
Bn−1(a)

dx1 · · · dxn−1

∫ b−ε

−b+ε
dxn

a√
b2 − x2n

with

b2 = a2 −
n−1∑
i=1

x2i .
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To evaluate the last integral we perform the substitution

xn = b sin θ, dxn = b cos θdθ,

which yields ∫ arcsin(1−ε)

arcsin(−1+ε)
dθ����b cos θ

a

����b cos θ
,

and since arcsin(−1 + ε/b)→ −π/2 and arcsin(1− ε/b)→ π/2 as ε→ 0,
then

v(Sn(a)) = 2πa

∫
Bn−1(a)

dx1 · · · dxn−1 = 2πaBn−1(a).

(b) Show that for t > 0,

v(Sn(t)) = Dv(Bn+1(t)).

[Hint: Use the result of Exercise 6 of 19.] I use equation, 5.32, for n+ 1,
instead of n− 1, and t instead of a. That is,

v(Bn+1(t)) =

∫ t

0

v(Sn(ρ))dρ.

I do not derive this equation. It should be obvious from calculus after
integrating along the radial direction concentric isotropic shells.

So from, the fundamental theorem of calculus, it is obvious that

v(Sn(t)) = Dv(Bn+1(t)). (5.38)

Problem 6.

The centroid of a compact manifold M in Rn is defined by a formula like
that given in Exercise 3 of §22. Show that if M is symmetric with respect to
the subspace xi = 0 of Rn, then ci(M) = 0.
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sln. It seems natural that the centroid of anything should lie in its center
of symmetry. This is an easy exercise of calculus. However the formality of
this using manifold rhetoric needs to be trained. I copied this proof from
Yang Zeng’s who has a good grasp on the language.

Let H+
i = {x ∈ Rn : xi > 0}. Then M ∩ H+

i is a manifold, for if
α : U → V is a coordinate patch on M , α : U ∩ α−1(H+

i ) → V ∩ H+
i is a

coordinate patch on M ∩H+
i . Similarly, if we let H−i = {x ∈ Rn : xi < 0},

then M ∩H−i is manifold.
Theorem 25.4 implies

ci(M) =
1

v(M)

∫
M

πdV =
1

v(M)

[∫
M∩H+

i

πdV +

∫
M∩H−

i

πdV

]
.

Suppose (αj) is a family of coordinate patches on M ∩ H+
i and {φi}l1 a

partition of unity on M ∩H+
i that is dominated by (αj), then∫

M∩H+
i

πidV =
l∑

j=1

∫
M

(φjπi)dV =
l∑

j=1

∫
IntUj

(φj ◦ αj)(πi ◦ αj)V (Dαj).

Define f : Rn → Rn by f(x) = (x1, · · · ,−xi, · · · , xn). It is easy to see
(f ◦ αj) is a family of coordinate patches on M ∩H−i and φ1 ◦ f, · · · , φl ◦ f
is a partition of unity on M ∩H−i that is dominated by (f ◦ αj). Therefore∫

M∩H−
i

πidV =
l∑

j=1

∫
IntUj

(φj ◦ f ◦ f ◦ αj)(πi ◦ f ◦ αj)U(D(f ◦ αj))

=
l∑

j=1

∫
IntUj

(φj ◦ αj)(πi ◦ f ◦ αj)U(D(f ◦ αj)).

In order to show that ci(M) = 0, it suffices to show

(πi ◦ αj)V (Dαj) = −(πi ◦ f ◦ αj)V (D(f ◦ αj)V (D(f ◦ αj)).

Indeed,

V 2(D(f ◦ αj))(x) = V 2(Df(αj(x))Dαj(x))

= det
(
(Dαj(x))TDf(αj(x))TDf(αj(x))Dαj(x)

)
= det

(
(Dαj(x))TDαj(x)

)
= V 2(Dα(x))
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and πi ◦ f = −πi. Combined, we conclude that∫
M∩H−

i

πidV = −
∫
M∩H+

i

πidV,

and so

ci(M) = 0.

Problem *7.

Let En
+(a) denote the intersection of Sn(a) with the upper half–space Hn+1.

Let λn = v(Bn(1)).

(a) Find the centroid of En
+(a) in terms of λn and λn−1.

sln. From exercise 4 of the section 25, we know that En
+(a) is a manifold

whose boundary is Sn−1(a).

From the definition 5.22 we have

Ci(Yα) =
1

v(Yα)

∫
A

πiV, (5.39)

Here Yα = En
+.

To find the volume v(Yα) we observe that, from equation 5.33,

v(Sn(a)) = 2πav(Bn−1(a))

= 2πanBn−1(1)

= 2πanλn−1.

However Yα is only half of the sphere so,

v(Yα) = πanλn−1. (5.40)

From the previous problem (Exercise 6) we know that the centroid ck
with respect to any direction k = 1, · · · , n is 0, since the manifold is
symmetric around those directions and each xk takes both positive and
negative values there. That is

ck = 0 1 ≤ k ≤ n.
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We should only find cn+1 in the upper Hn+1 upper space.

We use the coordinate patch defined in equation 5.34. That is,

α : Rn → Rn+1

(x1, · · · , xn) = (x1, · · · , xn, f(x1, · · · , xn))

with

f(x1, · · · , xn) =

√√√√a2 −
n∑
i=1

x2i

We found (see equation 5.37) that

det(Dα)T (Dα) =
a2

a2 −
∑n

i=1 x
2
i

and so

V (Dα) =
a√

a2 −
∑n

i=1 x
2
i

=
a

f
=

a

xn+1

(5.41)

where

f = xn+1,

So, from equations 5.39, 5.40 and 5.41

cn+1 =
1

πanλn−1

∫
A

xn+1
a

xn+1

Since A is the set such that

x21 + · · ·+ x2n ≤ a2,

v(A) = v(Bn(a)) = anλn, (5.42)

(I show the second equation in my notes on PDE) then

cn+1 =
1

πanλn−1
an+1λn

=
a λn
πλn−1

,
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and

ci = δi n+1
a λn
π λn−1

, (5.43)

Let us check this formula against known cases in small dimensions. Some
first few values of λi are

λ0 = 1

λ1 = 2

λ2 = π

λ3 =
4

3

So, the last (only non–trivial) coordinate cn+1 on each case is

c1 =
2a

π
semicircle

c2 =
πa2

π(2a)
=

a

2
see 5.23

c3 =
4/3 πa3

π2a2
=

4a

3π

(b) Find the centroid of En
+(a) in terms of the centroid of Bn−1

+ (a). (See the
exercises of §19.)

From equations 5.43, and 5.42 we find

ci = δi n+1
av(Bn(a))/an

πv(Bn−1(a)/an−1
= δi n+1

1

π

v(Bn(a))

v(Bn−1(a))

It is interesting to observe that as n → ∞ , v(Bn(a)) → 0, v(Sna) → 0
and ci → 0, even for i = n+ 1.

Problem 8.

Let M and N be compact manifolds without boundary in Rm and Rn, re-
spectively,

(a) Let f : M → R and g : N → R be continuous. Show that∫
M×N

f · gdV =

[∫
M

f dV

] [∫
N

g dV

]
.

[ Hint: Consider the case where the supports of f and g are contained
in coordinate patches.]
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sln. From Yan Zeng’s document. Let {αi} be a family of coordinate
patches on M and φ1, · · · , φl a partition of unity on M dominated by
{αi}. Let {βj} be a family of coordinate patches on N and ψ1, · · · , ψk
a partition of unity on N dominated by {βj} . Then it is easy to
show that {(αi, βj)}i,j is a family of coordinate patches on M × N
and {φmψn}1≤m≤l,1≤n≤k is a partition of unity on M × N dominated
by {(αi, βj)}i,j.

∫
M×N

f · gdV =
∑

1≤m≤l
1≤n≤k

∫
M×N

(φmf)(φng)dV

=
∑

1≤m≤l
1≤n≤k

∫
IntUm×IntVn

(φm ◦ αm · f ◦ αm)V (Dαm)

(ψn ◦ βm · g ◦ βn)V (Dβn)

=
∑

1≤m≤l
1≤n≤k

∫
IntUm

(φm ◦ αm · f ◦ αm)V (Dαm)

∫
IntVn

(ψn ◦ βn · g ◦ βn)V (Dβn)

=

[ ∑
1≤m≤l

∫
IntUm

(φm ◦ αm · f ◦ αm)V (Dαm)

]
[ ∑
1≤n≤k

∫
IntVn

(ψn ◦ βn · g ◦ βn)V (Dβn)

]

=

[∫
M

f dV

] [∫
N

g dV

]
.

(b) Show that v(M ×N) = v(M) · v(N).

sln. Set f = g = 1 in (a).

(c) Find the area of the 2–manifold S1 × S1 in R4. In (b), we see that

v(S1 × S1) = v(S1) · v(S1) = (2π)(2π) = 4π2.
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Chapter 5: Differential Forms

Section 26: Multilinear Algebra

Problem 4.

Determine which of the following are tensors in R4, and express those that
are in terms of the elementary tensors in R4.

(a)

f(x,y) = 3x1y2 + 5x2x3.

sln. Here we have V 1 = V 2 = R4. For, f to be a tensor, f should be
linear in both x and y. However the crossing term x2x3 spoils linearity
since

f(cx,y) = 3 c x1y2 + 5 c2 x2x3 6= c (f(x,y).

(b)

g(x,y) = x1y2 + x2y4 + 1,

sln. The constant 1 spoils linearity. A linear operator should map 0 to
0. We see that

g(cx,y) = c x1y2 + c x2y4 + 1 6= c g(x,y).

sln. (since 1 does not get scaled).

(c)

h(x,y) = x1y1 − 7x2y3.

57
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sln. h is a tensor. It is linear in both x and y, now

h(x,y) = x1y1 − 7x2y3 = φ1φ1 − 7φ2φ3 = φ1,1 − 7φ2,3.

Problem 5.

Repeat Exercise 4 for the functions

(a)

f(x,y, z) = 3x1x2z3 − x3y1z4.

sln. The crossing term x1x2z3 breaks linearity. So f is not a tensor.

(b)

g(x,y, z,u,v) = 5x3 y2 z3 u4 v4.

sln. Here g is a tensor and we can write it as

g = 5φ3,2,3,4,4.

Problem 6.

Let f and g be the following tensors in R4.

f(x,y, z) = 2x1 y2 z2 − x2 y3 z1,
g = φ2,1 − 5φ3,1

(a) Express f ⊗ g as a linear combination of elementary 5–tensors.

sln.

f = 2φ1,2,2 − φ2,3,1, g = φ2,1 − 5φ3,1

and

f ⊗ g = 2φ1,2,2,2,1 − 10φ1,2,2,3,1 − φ2,3,1,2,1 + 5φ2,3,1,3,1

(b) Express (f ⊗ g)(x,y, z,u,v) as a function
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sln.

(f ⊗ g)(x,y, z,u,v) = 2x1 y2 z2 u2 v1 − 10x1 y2 z2 u3 v1

−x2 y3 z1 u2 v1 + 5x2 y3 z1 u3 v1.

Problem 7.

Show that the four properties stated in Theorem 26.4 characterize the tensor
product uniquely, for finite–dimensional spaces V.

sln. Assume the following tensors f1 =
∑

I fI1φI in V , g1 =
∑

J gI1 ψJ .
If f2 =

∑
K fK2αK = f1, then because the tensor is uniquely defined, then

I = K, φI = αK , and fI1 = fK2. In the same way, if g2 =
∑

L gL2βL = g1
then J = L, ψJ = βL, and gJ1 = gL2.

So

f1 ⊗ g1 =

(∑
I

fI1φI

)(∑
J

gJ1ψI

)

=

(∑
I

∑
J

fI1φIgJ1ψI

)
=

∑
I,J

fI1gJ1ψIφJ

=
∑
K,L

fK2gL2αKβL

=

(∑
K

∑
L

fK2φLgJ2αK

)
= f2 ⊗ g2,

so the tensor product defines a unique representation.

Problem 8.

Let f be a 1–tensor in Rn; then f(y) = A · y for some matrix A of size 1 by
n. If T : Rm → Rn is the linear transformation T (x) = B · x, what is the
matrix of the 1–tensor T ∗f on Rm?
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sln. Pick x ∈ Rm. Then

T ∗f(x) = f(T (x)) = f(B · x) = A ·B · x = (AB) · x

So the matrix of the T ∗f on Rm is AB.

Section 27: Alternating Tensors

Problem 1.

Which of the following are alternating tensors in R4?

(a)

f(x,y) = x1 y2 − x2 y1 + x1y1

sln. f is a tensor. Now There are only two options f(x,y) and f(y,x),
where

f(y,x) = y1x2 − y2x1 + y1x1,

We see that f(y,x) 6= −f(x,y) if x1y1 6= 0. So f is not alternating.

(b)

g(x,y) = x1y3 − x3y3.

g is a tensor. Now,

g(y,x) = y1x3 − y3x3 6= −(x1y3 − x3y3)

in general. For example choose x1 = y1 = 0, and x3y3 6= 0. So g is not
alternating.

(c)

h(x,y) = x31 y
3
2 − x32y31.

h is not multilinear, so it is not even a tensor.
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Problem 2.

Let σ ∈ S5 be a permutation such that

(σ(1), σ(2), σ(3), σ(4), σ(5)) = (3, 1, 4, 5, 2).

Use the procedure given in the proof of Lemma 27.1 to write σ as a composite
of elementary permutations.

sln. I personally believe that Lemma 27.1 is quite confuse and this exercise
shows my point.

Here i = 0 according to the definition in the Lemma. That is, no element
is fixed. So, the sequence 1, · · · , i − 1 = −1 does not have sense and this
invalidate some of the statements in the Lemma. What is σ(0) ? We have
then to assume to get started that i = 1, otherwise we can not even get
started.

Instead I proof the theorem stating the bubble sort algorithm from com-
puter science.

Let us assume that we have a sequence σ = (a1, · · · an), that we want to
sort into ascending order. If the sequence is of numbers from 1 to n then the
final sequence, after sorting is σ0 = (1, · · · , n).

The bubble sort algorithm consists of two loops. The internal loop takes
the largest of each of the remainder (non yet sorted) elements to the top.
This is done by comparing each element with the next neighbor and pushing
it up if it is bigger than its following neighbor. Once the largest element is
on the top, then the outer loop takes control by sorting only the remaining
elements, in the same fashion.

Here there is a C++ implementation of the bubble sort algorithm:

void bubbleSort(int arr[], int n) {

bool swapped = true;

int j = 0;

int tmp;

while (swapped) {

swapped = false;

j++;

for (int i = 0; i < n - j; i++) {

if (arr[i] > arr[i + 1]) {

// swap two consecutive elements

tmp = arr[i];

arr[i] = arr[i + 1];

arr[i + 1] = tmp;

swapped = true;

}

http://en.wikipedia.org/wiki/Bubble_sort
http://www.algolist.net/Algorithms/Sorting/Bubble_sort
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}

}

}

Each swap is an elementary permutation ei. Once the array is sorted, the
final result is the identity array σ0, and so

σ0 = σk ◦ σk−1 · · · ◦ σ1 ◦ σ,

where k is the total number of permutations done. Each σi is a swap. Then
because each elementary permutation is its inverse, we can write

σ = σ1 ◦ σ2 · · · ◦ σk.

We illustrate the bubble sort with this exercise. Pop up the first bubble
(that is, take 5 to the top)

σ = (3, 1, 4, 5, 2)⇒ e1 ◦ σ = (1, 3, 4, 5, 2)⇒ e4 ◦ e1 ◦ σ = (1, 3, 4, 2, 5).

Pop up the second bubble (that is, take 4 to the the fourth place)

e3 ◦ e4 ◦ e1 ◦ σ = (1, 3, 2, 4, 5).

Pop up the third element into its position 3.

e2 ◦ e3 ◦ e4 ◦ e1 ◦ σ = (1, 2, 3, 4, 5) = σ0.

At this time we do not have to swap more elements. Se found

σ = e1 ◦ e4 ◦ e3 ◦ e2.

Let us verify this

e2 = (1, 3, 2, 4, 5)

e3 ◦ e2 = (1, 3, 4, 2, 5)

e4 ◦ e3 ◦ e2 = (1, 3, 4, 5, 2)

σ = e1 ◦ e4 ◦ e3 ◦ e2 = (3, 1, 4, 5, 2)

as desired.
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Problem 3.

Let ψI be an elementary k–tensor on V corresponding to the basis a1, · · · ,an
for V . If j1, · · · , jk is an arbitrary k–tuple of integers from the set {1, · · · , n},
what is the value of

ψI(aj1 , · · · ,ajk)?

sln. We know from Theorem 27.5, that if the sequence I = i1, · · · , ik is
ascending then

ψI(aj1 , · · · ,ajk) =

{
0 if I 6= J
1 if I = J

where J = (j1, · · · , jn).
It could happen that that the sequence J is not in ascending mode. To put

J in ascending mode we need to perform some number m of permutations,
and each permutation would reverse the sign, so,

ψI(aj1 , · · · ,ajk) =

{
0 if {I} 6= {J}

sgn(J) if {I} = {J}

where, for example, the symbol {I} means I as a set, that is, the order does
not matter.

Problem 4.

Show that if T : V → W is a linear transformation and if f ∈ Ak(W ), then
T ∗f ∈ Ak(V ).

sln. Let us assume that {v1, · · ·vk} are base vectors for V . Let σ be a
permutation of {1, · · · , k}. So,

(T ∗f)σ(v1, · · · ,vk) = T ∗f(vσ1 , · · · ,vσk)
= f(T (vσ1 , · · ·vσk))
= (fT )σ(v1, · · ·vk))
= sgnσ f(T (v1, · · ·vk)) since f ∈ Ak(W )

= sgnσ (T ∗ f)(v1, · · ·vk),

hence T ∗f ∈ Ak(W ).



64

Problem 5.

Show that

ψI =
∑
σ

(sgnσ)φIσ ,

where if I = (i1, · · · , ik), we let Iσ = (iσ(1), · · · , iσ(k)). [Hint: Show first that
(φIσ)σ = φI .]

sln. I believe Munkres meant this: Hint: Show first that φIσ = (φI)
σ.

Let us assume some k–base vectors

viσ(1) , · · · ,viσ(k) ,

so

(φIσ)σ
−1

(viσ(1) , · · · ,viσ(k)) = (φIσ)(vi1 , · · · ,vik) =

{
0 if Iσ 6= I
1 if Iσ = I

In other words

(φIσ)σ
−1

(viσ(1) , · · · ,viσ(k)) =

{
0 if I 6= Iσ
1 if I = Iσ

= φI(viσ(1) , · · · ,viσ(k)).

From which

(φIσ) = (φI)
σ.

and from formula

ψI =
∑
σ

(sgnσ)(φI)
σ

of Theorem 27.5 the proof follows.
Before starting to solve the problems of this section, let me do a simple

exercise implied in step 4 of Theorem 28.1.
Show that the number of inversions in the permutation

(π(1), · · · , π(k + `)) = (k + 1, k + 2, · · · , k + `, 1, 2, · · · , k),

is k l. That is, sgnπ = (−1)k l.
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sln. We first move 1 to the first place by swapping it with k + `, k + `− 1
and so forth until swapping it with k+ 1, we need to swap it ` times and end
up with

(1, k + 1, k + 2, · · · , k + `, 2, · · · k)

We do the same for 2, moving it to the second plane; and so forth until k.
This is k times `, or in other words k `.

Section 28: The Wedge Product

Problem 1.

Let x,y, z ∈ R5. Let 4

F (x,y, z) = 2x2 y2 z1 + x1 y5 z4,

G(x,y) = x1 y3 + x3 y1,

h(w) = w1 − 2w3.

(a) Write AF and AG in terms of elementary alternating tensors. [Hint:
Write F and G in terms of elementary tensors and use step 9 of the
preceding proof to compute AφI . ]

sln.

F = 2φ2 ⊗ φ2 ⊗ φ1 + φ1 ⊗ φ5 ⊗ φ4.

So, form the property on Step 9 of Theorem 28.1

AF = 2φ2 ∧ φ2 ∧ φ1 + φ1 ∧ φ5 ∧ φ4 = −φ1 ∧ φ4 ∧ φ5 = −ψ1,4,5.

Similarly

G = φ1 ⊗ φ3 + φ3 ⊗ φ1 ⇒ AG = φ1 ∧ φ3 + φ3 ∧ φ1 = 0.

(b) Express (AF ) ∧ h in terms of elementary alternating tensors.

4 note the typographical error for the third variable of F in Munkres statement
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sln.

AF ∧ h = −(φ1 ∧ φ4 ∧ φ5) ∧ (φ1 − 2φ3)

= 2φ1 ∧ φ4 ∧ φ5 ∧ φ3

= −2φ1 ∧ φ4 ∧ φ3 ∧ φ5

= 2φ1 ∧ φ3 ∧ φ4 ∧ φ5

= 2ψ1,3,4,5.

(c) Express (AF )(x,y, z) as a function.

sln. From the Example 2, (and in general from Theorem 27.7)

ψi,j,k(x,y, z) = det

 xi yi zi
xj yj zj
xk yk zk


In particular

(AF )(x,y, z) = −ψ1,4,5 = − det

 x1 y1 z1
x4 y4 z4
x5 y5 z5


That is,

(AF )(x,y, z) = −z1(x4 y5 − x5 y4)− x1(y4z5 − y5z4) + y1(x4z5 − x5z4)
= −x4y5z1 + x5y4z1 − x1y5z5 + x1y5z4 + x4y1z5 − x5y1z4.

Problem 2.

If G is symmetric, show that AG = 0. Does the converse hold?

sln. Let us assume G = f1⊗ · · · ⊗ fm⊗ · · · ⊗ fn⊗ · · · ⊗ fk, where m and n
are two arbitrary indices with m 6= n.

G = f1 ⊗ · · · ⊗ fm ⊗ · · · ⊗ fn ⊗ · · · ⊗ fk = f1 ⊗ · · · ⊗ fn ⊗ · · · ⊗ fm ⊗ · · · ⊗ fk

and so

AG = f1 ∧ · · · ∧ fm ∧ · · · ∧ fn ∧ · · · ∧ fk = f1 ∧ · · · ∧ fn ∧ · · · ∧ fm ∧ · · · ∧ fk
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But from the wedge properties

f1 ∧ · · · ∧ fn ∧ · · · ∧ fm ∧ · · · ∧ fk = −f1 ∧ · · · ∧ fm ∧ · · · ∧ fn ∧ · · · ∧ fk

so

AG = 2f1 ∧ · · · ∧ fm ∧ · · · ∧ fn ∧ · · · ∧ fk = 0

Since n and m are arbitrary then in any case

AG = 0.

I claim that any general tensor G is a finite sum of products of 1–tensors. So
AG = 0 is still valid.

The converse should hold since by definition

AG =
∑
σ

(sgnσ)F σ = 0,

then since the sgnσ changes for each transposition we can divide the sum
in two sets, the even and the odd transpositions. We can map each index
array for the tensor F (assuming it is or rank k) i1, i2, · · · im · · · in . . . ik to
its transpoed i1, i2 · · · in · · · im · · · ik where we just switched the index in with
the index im. If F is non–symmetric then the terms will not cancel under
the transposition, so we would not have the whole sum equal to 0.

Problem 3.

Show that if f1, · · · , fk are alternating tensors of order `1, · · · , `k, respectively,
then

1

`1! · · · `k!
A(f1 ⊗ · · · ⊗ fk) = f1 ∧ · · · ∧ fk.

sln. From step 2 we see the definition

f ∧ g =
1

k!`!
A(f ⊗ g),

where f and g are tensors of order k and ` respectively.
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We use induction. Assume that for the result is valid up to k − 1. That
is,

1

`1! · · · `k−1!
A(f1 ⊗ · · · ⊗ fk−1) = f1 ∧ · · · ∧ fk−1.

Let us define

g = f1 ⊗ · · · ⊗ fk−1

The order of g is given by `1! · · · `k−1! . Now we apply the definition (using
associativity) to the product

g ∧ fk =
1

(`1! · · · `k−1!)`k!
A(g ⊗ fk).

That is

1

`1! · · · `k!
A(f1 ⊗ · · · ⊗ fk) = f1 ∧ · · · ∧ fk.

Problem 4.

Let x1, · · · ,xk be vectors in Rn; let X be the matrix X = [x1 · · ·xk]. If
I = (i1, · · · , ik) is an arbitrary k–tuple from the set {1, · · · , n}, show that

φi1 ∧ · · · ∧ φik(x1, · · · ,xk) = detXI .

sln. We know from step 9 in Theorem 28.1 that

A(φi1 ⊗ · · · ⊗ φik)(x1, · · · ,xk) = φi1 ∧ · · · ∧ φik(x1, · · · ,xk).

(also look at the previous Problem 3, where each tensor is of order 1).
Also, from ψI = AφI we find

A(φi1 ⊗ · · · ⊗ φik)(x1, · · · ,xk) = AφI(x1, · · · ,xk) = ψI(x1, · · · ,xk).

and from Theorem 27.7

ψI(x1, · · · ,xk) = detXI ,

so the result

φi1 ∧ · · · ∧ φik(x1, · · · ,xk) = detXI ,

follows.
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Problem 5.

Verify that T ∗(F σ) = (T ∗F )σ.

sln. Let us assume that the set {v1, · · · ,vk} is a basis for W , so

T ∗(F σ)(v1, · · · ,vk) = F σ(T (v1), · · · , T (vk))

= F (T (vσ(1)), · · · , T (vσ(k)))

= T ∗F (vσ(1), · · · ,vσ(k))
= (T ∗F )σ(v1, · · · ,vk),

which proofs the statement.

Problem 6.

Let T : Rm → Rn be the linear transformation T (x) = B · x.

(a) If ψI is an elementary alternating k–tensor on Rn, then T ∗ψI has the
form

T ∗ψI =
∑
[J ]

cJψJ ,

where the ψJ are the elementary alternating k–tensors on Rm. What are
the coefficients cJ?

sln. Let us assume a basis {a1, · · · ,am} in Rm. For convenience in
notation let us define

f(ai1 , · · · ,aik) = T ∗ψI(ai1 , · · · ,aik)

We assume I = (i1, · · · , ik) is an ascending order for the vectors ai Since
f is an alternating tensor in Rm, then this can be written as

f(ai1 , · · · ,aik) =
∑
|J |

cJψJ(ai1 , · · · ,aik) (5.44)

where J = (j1, · · · , jk) an ascending sort of k members, for the basis
vectors aj.
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The only contribution to the sum (see theorem 27.5) comes from I = J .
That is

f(ai1 , · · · ,aik) = cIψI(ai1 , · · · ,aik) = cI (5.45)

On the other hand

(T ∗ψI)(ai1 , · · ·aik) = ψI(T (ai1), · · · , T (aik))

= ψI(B · ai1 , · · · , B · aik).

We want to use Theorem 27.7. Assume that the vectors ai are the
canonical vectors ei we define the matrix

X = [B · ei1 , · · · , B · eik ] = BI

with BI = [bi1 , · · · , bik ], the matrix composed of the I columns of B.

Then, from Theorem 27.7,

ψI(B · ai1 , · · · , B · aik) = detXI = detBII , (5.46)

where XI = BII is the matrix composed of the I columns and rows of
B.

Then from equations 5.44, 5.45, and 5.46, we find

cI =

{
detBJJ if I = J

0 if I 6= J

where BII is the matrix formed by taking the I rows and columns of B.

(b) If f =
∑

[I] dIψI is an alternating k–tensor on Rn, express T ∗f in terms
of the elementary alternating k–tensors on Rm.

sln. My opinion is that this should be part (a), and what we solved as
(a) should be part (b).

As in part, (a), assume I = (i1, · · · , ik) is an ascending order for the
vectors ai, from a basis {a1, · · · ,am}. Let us name

g(ai1 , · · · ,aik) = T ∗f(ai1 , · · · ,aik),
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Since g is an alternating tensor in Rm, then this can be written as

g(ai1 , · · · ,aik) =
∑
|J |

cJψJ(ai1 , · · · ,aim).

From all combinations only the I = J will produce a non–zero value.
That is,

g(ai1 , · · · ,aik) = cIψI(ai1 , · · · ,aim) = cI ,

so all we have to evaluate is

g(ai1 , · · · ,aik) = T ∗f(ai1 , · · · ,aik)
= f(T (ai1), · · · , T (aik))

and so

cI =

{
f(T (aj1), · · · , T (ajk)) if I = J

0 if I 6= J

Section 29: Tangent Vectors and Differential

Forms

Problem 1.

Let γ : R → Rn be of class Cr. Show that the velocity vector of γ corre-
sponding to the parameter t is the vector γ∗(t; e1).

sln. By definition, and Theorem 5.4

γ∗(t; e1) = (γ(t);Dγ(t) · e1)
= (γ(t); γ̇(t))

which is in fact the velocity vector for the curve γ. Here

γ̇(t) =

 dγ1(t)/dt
...

dγn(t)/dt


and e1 = [1].
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Problem 2.

If A is open in Rk and α : A → Rk is of class Cr, show that α∗(x;v) is the
velocity vector of the curve γ(t) = α(x + tv) corresponding to parameter
t = 0.

sln. By definition

α∗(x;v) = (α(x);Dα(x) · v)

From the definition of directional derivative

α′(x,v) = lim
t→0

α(x+ tv)− α(x)

t
= lim

t→0

γ(t)− γ(0)

t
= γ̇(0).

On the other hand, from Theorem 5.1

α′(x,v) = Dα(x) · v.

Hence

α∗(x;v) = (γ(0); γ̇(0)).

Which is the velocity vector at t = 0.

Problem 3.

Let M be a k–manifold of class Cr in Rn. Let p ∈M . Show that the tangent
space to M at p is well–defined, independent of the choice of the coordinate
patch.

sln. Assume the coordinate patch α : Uα → Vα around point p. The
tangent space, Tp(M) is a linear space spanned by the vectors of the form
(p; ∂α/∂xj) as shown in the text. Let us assume that there is another coor-
dinate patch around the point p, β : Uβ → Vβ. For this coordinate patch the
tangent space is generated by the points (p; ∂β/∂yj). We want to show that
the two tangent spaces are actually two representations of the same object.

I follow, Yan Zeng’s argument. Let W = Vα ∩ Vβ (the set is not empty
since p ∈ W ). Let us call U ′α = α−1(W ) and U ′β = β−1(W ). Then from



73

Theorem 24.1, β−1 ◦ α : U ′α → U ′β is a Cr–diffeomorphism. From using the
chain rule,

Dα(x) = D(β ◦ β−1 ◦ α)(x) = D(β)(y) ·D(β−1 ◦ α)(x).

Since D(β−1 ◦ α) : U ′α → U ′β is of rank k, then as sets,

{Dα(x) · v,v ∈ Rk} = {Dβ(y) ·w,w ∈ Rk}

are the same, and we understand that y = (β−1 ◦ α)(x) is any arbitrary
number in Rk as x is. Also w = D(β−1 ◦α)(x) ·v, where again, since β−1 ◦α
is a diffeomorphism then v is as arbitrary as w is.

In conclusion the tangent space Tp is independent of the coordinate patch
around p.

Problem 4.

Let M be a k–manifold in Rn of class Cr. Let p ∈M − ∂M .

(a) Show that if (p;v) is a tangent vector toM , then there is a parameterized–
curve γ : (−ε, ε)→ Rn whose image set lies in M , such that (p;v) equals
the velocity vector of γ corresponding to parameter value t = 0. See
Figure 29.4

sln. The idea is to pick a small line segment inside the open set in the
domain of α and map this segment of a curve γ(x) where x rides along
this small line segment. Also, the direction of the segment should be
along the direction of the tangent vector v. Since p ∈ M − ∂M , and
α−1 : V → U is continuous, we can pick a small open set Ov around p
and its inverse image under α, that will generate an open set Ou ⊂ U .
So, x = α−1(p) ⊂ U is inside some open ball B(p, ε) in the domain U of
α, of radius ε. We can find a small segment such that it is totally within
this ball. To find the direction of the segment we know that since v is
tangent to M then there exist u ∈ U , such that v = Dα(x) · u. The
segment is given by the points x+ tu, and the mapping

γ(t) := α(x+ tu)

where |t| < ε, maps points from U to the manifold M . Also, from the
definition of directional derivative
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d

dt
γ(t)

∣∣∣∣
t=0

= Dα(x) · u = v.

(b) Prove the converse. [Hint: Recall that for any coordinate patch α, the
map α−1 is of class Cr. See Theorem 24.1]

sln. We assume that if the vector (p,v) is such that v equals the velocity
of γ : (−ε, ε)→ Rn. Then we show that (p,v) is tangent to the manifold M ,
that is we show that

(p,v) = α∗(x,u),

for some u and α(x) = p. In the previous problem we used the definition
v = Dα(x) ·u. Using the hint, since α−1 is of class Cr then we can uniquely
and in the same way define

u = (Dα)−1(x) · v.

and from the definition of tangent vector to a manifold,

α∗(x,u) = (p;Dα(x) · u)

= (p; (Dα)(x) · (Dα)−1(x) · v)

= (p,v)

which verifies the statement.

Problem 5.

Let M be a k–manifold in Rn of class Cr. Let q ∈ ∂M .

(a) Show that if (q,v) is a tangent vector to M at q, then there is a
parameterized–curve γ : (−ε, ε) → Rn, where γ carries either (−e, 0]
or [0, ε) into M , such that (q,v) equals the velocity vector of γ corre-
sponding to the parameter value t = 0.
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sln. This is quite similar to Problem 4, but now we are on the bound-
ary of the manifold. Still, the details are bit more difficult because the
boundary. I will mimic Problem 4 solution here.

Since p is in ∂M then α−1(p) is in Hk, then from the counter–reciprocal
of part (b) of Lemma 24.2, we have that x = α−1(p) /∈ Hk

+. So xk = 0.
Because α is Cr then for any open set OM in M having p the inverse
α−1 is an open set OU in the domain of α.

We want to construct a small segment in the domain of α. The segment
is the set of points x+ tu, with x, such that α(x) = q, and u such that
v = Dα(x) ·u. The existence if u is guaranteed because v is tangent to
M and the definition of v ∈ TM .

There could be three possibilities

(a) u is along the direction with uk = 0, that is pointing along the Hk

hyper–plane interface. In this case we can have t ∈ (−ε, ε) such that
x+ tu is totally within the domain of α, U .

(b) The direction of u is toward Hk
+, and in this case t ∈ [0, ε) would

be such that the segment x+ tu is completely immersed in U .

(c) The direction of u is toward Hk
−, and in this case t ∈ (−ε, 0] is such

that the set x+ tu is contained in U .

In any case, the definition

γ(t) = α(x+ tu),

is such that γ(0) = α(x) = q, and

d

dt
γ(t)

∣∣∣∣
t=0

= Dα(x) · u = v.

(b) Prove the converse.

sln. We assume that (p,v) is such that v is the velocity of γ : A→ Rn,
where A is an interval that could be (−ε, ε), (−ε, 0] or [0, ε), according
to the three cases considered above. We want to prove that

(p,v) = α∗(x,u),
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for some u and α(x) = p. Proceeding as before with v = Dα(x ·u) and
since α−1 is of class Cr, then we can uniquely define

u = (Dα)−1(x) · v.

Now, from the definition of tangent vector to a manifold,

α∗(x,u) = (p;Dα(x) · u)

= (p; (Dα)(x) · (Dα)−1(x) · v)

= (p,v)

which verifies the statement.
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