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Abstract

Just for my own understanding.

1 The Householder transformation

The QR factorization of a matrix could be done by the use of the Cholesky
factorization, Fast Givens, Grand–Schmidt or Householder transformation
methods (among others).

Here I want to explain about the Householder transformation method.
Given two vectors with equal norm, x and y we want to find a matrix

that transforms x into y. If the vectors are the same, the problem is trivial
and the matrix is the identity I, then we assume x 6= y.

We can build the unit vector that sends us from the starting point x to
the end point y, that is

u =
x− y

‖x− y‖
.

So we want a transformation that reflect the vector x to its mirror image y
with respect to the axis v, which would be the bisector of the two vectors x
and y. That is

v =
x + y

‖x + y‖
.

Since the vectors x and y are in a plane (spanned by both vectors) we
can assume that we are living in this plane with some Cartesian coordinates
X and Y , as shown in figure 1. Let us assume that the vector x is below
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Figure 1: An illustration of the construction of the Householder transforma-
tion
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the X It is clear that to go from x to y we have to add the dashed vector
that joins x to y. But this vector is 2 times the the projection of x along
the direction u. That is

x− y = 2〈x,u〉u,

from which

y = x− 2〈x,u〉u = x− 2uuTx = (I − 2uuT )x (1.1)

I claim that it was something like this that motivated Householder to
define his general matrix

H = I − 2uuT .

in Rn×n. In words: The Householder transformation H, reflects the vector x
with respect to the plane orthogonal to u, into y.

The properties and use of this matrix are interesting. Let us list a few
properties.



1.1 properties

• Besides Hx = y we have the particular mappings

Hv = v and

Hu = −u

That is, both v and u are eigenvectors of H, and the λu = 1 is an
eigenvalue of multiplicity n − 1, (since there are n − 1 dimensions in
the hyperplane normal to v), and λv is an eigenvalue of multiplicity 1.

The proof for this is by simple substitution:

Hv = (I − 2uuT )v

= v − 2u��
��*

0
(uTv)

= v

Hu = (I − 2uuT )u

= u− 2(uuT )u

= u− 2u(��
�*1

uTu)

= −u

• H is symmetric. That is

HT = (I − 2uuT )T = I − 2uuT ,

• H is orthogonal. That is, HHT = HTH = I. Let us proof one of these
equalities.

Since H is symmetric

HHT = (I − 2uuT )(I − 2uuT )

= (I − 4uuT + 4(uuT )(uuT )

= I − 4uuT + 4u��
��*

1
(uTu)uT

= I.

• H is idempotent. That is H2 = I. This is immediate from the sym-
metric and orthogonality conditions above.



1.2 The appealing use of geometric algebra

.

1.2.1 Notes on Clifford Algebras

I use Eric Chisolm notes on geometric algebra for this section. I found
interesting the simplification of the Householder transformation under the
geometric algebra (also known as Clifford algebra).

Up to this point I used bold face fonts to represent vectors. Vectors of a
geometric algebra space come in all dimensions and there are no distinction
except for the context, so I will drop the bold face fonts and use regular
non–boldface fonts for all vector objects.

The motivation that Eric presents is that of generalizing the concept of
vector based on its properties and in a coordinate free space.

By taking the intrinsic properties of a vector

1. An attitude: exactly which subspace is represented.

2. A weight a measure, length, area, volume, etc.

3. An orientation: positive/negative, forward/backward, clockwise/counterclockwise.
No matter the dimension a space has always two dimensions.

By extracting this intrinsic properties we factor out all tensor that we
know.

• Tensors of order zero:

1. Have the attitude of scalars.

2. Have an absolute value (weight).

3. Could be positive or negative.

• Tensors of order one

1. Have the attitude of traditional vectors.

2. Have a norm (length).

3. Could be positive or negative.

• Tensors of order two
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1. Have the attitude of matrices.

2. Have a norm. However here we want to think about the determi-
nant instead of the norm, because the determinant measures the
volume corresponding to the matrix.

3. Could be positive or negative (left or right handed).

In general a tensor of any order can have those characteristics.

1. The attitude is the rank of the tensor.

2. The weight is?

3. The orientation is?

It is not clear what the weight and orientation could be for tensors of
rank 3 and higher. For tensors of order 2 (matrices) we know that the
determinant plays the role of area and volume and it has a sign but, what is
the generalization of determinant for higher order tensors?

In geometric algebra the dot and wedge products are defined as well
as a new definition of product called “geometric product”, which allows to
represent objects of any dimension and all as part of the same space (which is
not possible in traditional linear algebra where each space can be represented
by objects of only one dimension n)

In traditional linear algebra we project a vector v along a vector u with
the operation

Pu(v) =
u · v
|u|2

u, (1.2)

where u · v is the inner product and |u|2 = u · u is the square of the length of
u. the cross product represents the oriented plane defined by u and v; which
point along the normal, and the direction indicates the orientation. Beyond
3D the definition of cross product does not work Differential geometry pro-
vides a definition called the wedge “∧” product which we introduce here in
a different way and that works as a good extension for the three dimensional
cross–product.

I now introduce the motivation and definition of the new product in
Clifford algebras. We want a product uv that follows the basic properties of
algebra, that is, it has a module, it is associative, it has closure, and element



has an inverse (these are the properties of a group, so the algebra would be
a group under this operations). If this is the case, then we have that

uv =
1

2
(uv + vu) +

1

2
(uv − vu). (1.3)

The first term looks like an inner product and has the properties of the inner
product, so we define

u · v ≡ 1

2
(uv + vu).

See with this that u2 = u.u = |u|2, so the square of any vector is just its
squared length. Then we can define

u−1 ≡ u

u2
,

(assuming u 6= 0) is the multiplicative inverse of u, since uu−1 = u2

u2
= 1. So

in this sense we can divide vectors. Also, the projection formula 1.2 turns
out to be

Pu(v) = (v.u)u−1.

Here u 6= 0, if u = 0 we do not need any projection to 0, do we?
The second term of the product uv in 1.3 is defined as the wedge product.

That is

u ∧ v =
1

2
(uv − vu).

First we see here clear the similarity with the determinant formula. The
wedge product is anti–symmetric. Let us investigate more of its properties.
1.3 we see

uv = u · v + u ∧ v
vu = u · v − u ∧ v,

we multiply these equations together to get

uvvu = (u · v)2 − (u ∧ v)2.



Now vv = |v|2, uu = |u|2,so

(u ∧ v)2 = uvvu− (u · v)2

= |u|2|v|2 cos2 θ − |u|2|v|2

= −|u|2|v|2 sin2 θ.

So the square of the wedge product is a negative scalar and has the
magnitude of the square of the cross product.

These two properties are interesting. The wedge product between to
vectors represents the area formed by their construction parallelogram (as
the cross product does) and it is a complex number representing a 90 degrees
phase shift (i = eπi/2). The product u∧v is called a simple bisector or 2–blade
, so 2-blades represent planes with an area and orientation (interchange u
and v and you change the sign of u ∧ v). There are blades of all orders, for
example

u ∧ v ∧ w,

which can be seen as u ∧ (∧v ∧ u). So by doing binary operations we can
extend the definition of any order (here 3, or 3-blades).

Let us now use the learned elements to show the Householder transfor-
mation from the point of view of Clifford algebra.

Referring to figure 1 again,
Let x be the vector we want to reflect and v be a vector along the reflection

axis. Then

x = x(vv−1)

= (xv)v−1

= (x.v)v−1 + (x ∧ v)v−1.

The first term is the projection of x along v. So the other term is the
component of x perpendicular to v also called the orthogonal rejection of x
from v. Now let y be the reflected vector. Its component perpendicular to v
has the same sign, while its component along v should have opposite, so the
reflected vector is given by

y = −(x · v)v−1 + (x ∧ v)v−1

= [−(v · x) + (v ∧ x)]v−1

= −(vx)v−1



This is a great simplification over the Householder reflection 1.1. We
further note the following symmetries

• (v · x)v−1 is the projection from x to v.

• −(v ∧ x)v−1 is the orthogonal rejection of from x from v.

• −(vx)v−1 is the reflection of x with respect to v.

1.3 Use in the QR factorization

We ask if it is possible to find

Hx = ‖x‖e1,

That is, a matrix H such that takes the vector x, into a vector with first
component ‖x‖ and the rest of the components 0.

Figure 2: An illustration of the construction of the Householder transforma-
tion, that suppress all components but the first on a vector.
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Figure 2 illustrates this situation. A given vector x and its x1 component
suppress by a reflection with respect to the vector v. The vector

u =
x− y

‖x− y‖



should do the work of reference vector for the Householder transformation.
Let us consider an example. Given x = (0,−3, 4)T , construct a House-

holder matrix H such that Hx = c e1. We find

c = ‖x‖ = 5,

so since (0,−3, 4)T − 5(1, 0, 0)T = (−5,−3, 4)T , and

‖(−5,−3, 4)T‖ =
√

25 + 9 + 15 =
√

50

then

u =
1√
50

(−5,−3, 4)T

and

H = I − 2uuT =

 1 0 0
0 1 0
0 0 1

− 2

50

 25 15 −20
15 9 −12
−20 −12 16


=

1

25

 0 −15 20
−15 16 12
20 12 9


We check that

1

25

 0 −15 20
−15 16 12
20 12 9

 0
−3
4

 =

 5
0
0


The QR factorization continue inductively for lower dimensions by re-

ducing the size of the matrix each time by 1, from the upper most left entry
down to the lower most right entry.
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