Get Ready to Be Inspired!
Introducing the new modular K-5 science learning experience designed to prepare the next generation of innovators.
WHY IS THE SKY BLUE?

WHY IS THE EARTH ROUND?

WHY DOES THE SUN SHINE?
Get Ready to Be Inspired!

Learning begins with curiosity. *Inspire Science* is designed to help you spark students’ interest and empower them to ask more questions, think more critically, and maximize their ability to creatively solve problems. *Inspire Science*’s instructional model will prove that science education can be comprehensive and offer fun learning experiences that are sure to pique the interest of the bright minds in your classroom. Let us, help you cultivate curiosity and inspire the next generation of innovators, visionaries, and inventors.

Embrace science through a simple, user-friendly teaching experience.

Get more out of science time through built-in literacy and math connections.

Prepare students for a future full of STEM opportunities.

See a video of Chloe and the other STEM Career Kids at Inspire-Science.com/career_kids
User-Friendly Lesson Structure

Inspire Science lessons are designed with the familiar and proven 5E instructional model. Each lesson also comes with an easy-to-follow process so you know exactly what comes next.

Key Steps to Three Dimensional Instruction

ASSESS LESSON READINESS

1. Page Keeley Science Probe

ENGAGE

2. Science in Our World
3. Essential Question
4. Science and Engineering Practices

EXPLORE

5. Inquiry Activity

Disciplinary Core Ideas

PS3.A Definitions of Energy

Crosscutting Concepts

Energy and Matter

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Each *Inspire Science* lesson begins with a Page Keeley Formative Assessment Probe.

PAGE KEELEY, M.ED.

I Will

EQuIP Rubric Aligned! Review the Inspire Science EQuIP Rubric at Inspire-Science.com
Simple Research-Based 5E Instructional Model

1. Assess Lesson Readiness
2. Engage
3. Explore
4. Explain
5. Elaborate
6. Evaluate

Research-Based 5E Instructional Model

1. Assess Lesson Readiness
2. Engage
3. Explore
4. Explain
5. Elaborate
6. Evaluate

Approximate Pacing
(based on 45-minute teaching blocks)

- Module = 1 month of instruction
- Lesson = 8-10 days of instruction
- Fast Track = 4-6 days of instruction

Follow the Fast Track when short on time. We’ll show you the activities key to understanding the lesson content.

I Can

1. Obtain and Communicate Information
2. Reflect and Refine

I Did

4. Research, Investigate, and Communicate
5. Performance Task
6. Essential Question
7. Science and Engineering Practices
Using this book you will learn to:
• be CURIOUS and ASK QUESTIONS
• develop HYPOTHESES
• conduct scientific INVESTIGATIONS
• COLLECT DATA
• RECORD your observations
• SOLVE REAL-WORLD PROBLEMS
• answer BIG QUESTIONS
• BE A SCIENTIST!
• BE AN ENGINEER!
User-Friendly Support

Inspire Science comes with extensive support and professional development to ensure that you are able to teach every one of our science lessons with great success—and feel like a real science guru, too!

- **Quick Start**
- **Implementation**
- **Administrator Support Videos**
- **Mastery Online Courses**

- **PROFESSIONAL DEVELOPMENT**
- **Classroom Models**
- **Coaching**
- **Demonstration Videos**

- **DINAH ZIKE, M.ED. VKV® AND FOLDABLES®**
- **PAGE KEELEY, M.ED. FORMATIVE ASSESSMENT PROBES**
- **Automotive Engineer**

- **Classroom Models**
- **Coaching**
- **Teaching Techniques for Science Probes**
3D Learning

Inspire Science integrates Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts with literacy and mathematics standards so teaching science feels as natural and intuitive as it should be.

Disciplinary Core Ideas

THE CONTENT IN FOCUS
(for example, “The Universe and Its Stars”)

Science and Engineering Practices

THE SKILLS
(for example, “Developing and Using Models”)

Crosscutting Concepts

THE COMMON THEMES
(for example, “System and System Models”)

6
ALL GREAT SCIENTISTS AND
ENGINEERS NEED STRONG LITERACY
AND MATH SKILLS.

The Inspire Science lessons include cross-curricular
connections with quick and easy references to the specific
literacy and math skills being reinforced through the
science investigations.

STUDENTS APPLY AND DEMONSTRATE
THEIR UNDERSTANDING

Students apply and demonstrate their understanding by using
the Disciplinary Core Ideas, the Science and Engineering
Practices and the Crosscutting Concepts together.
(for example, “Use observations of the sun, moon, and stars
to describe patterns that can be predicted.”)

Cross-Curricular Connections

LITERACY MATH

ALL GREAT SCIENTISTS AND
ENGINEERS NEED STRONG LITERACY
AND MATH SKILLS.

The Inspire Science lessons include cross-curricular
connections with quick and easy references to the specific
literacy and math skills being reinforced through the
science investigations.

Not using Next Generation Science Standards*? Inspire Science is still for you.

Inspire Science is built for Next Generation Science Standards, with the added bonus
of literacy and math integration. Whether your state has adopted the Next Generation
Science Standards or not, science standards everywhere are shifting to include
more hands-on, problem-solving lessons, greater integration with other disciplines,
and a higher demand for new, innovative science education programs. That’s where Inspire
Science can help.

*Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners
that developed the Next Generation Science Standards were involved in the production of or endorse this product.
Cross-Curricular Connections

Inspire Science connects the science you teach to the core subjects your students study. By integrating science, literature, and math, students master key concepts that impact science and beyond.

Science + Engineering Practices

Students achieve and demonstrate greater understanding through hands-on science and engineering activities using the engineering design process.

- Asking Questions and Defining Problems
- Developing and Using Models
- Planning and Carrying Out Investigations
- Analyzing and Interpreting Data
- Using Mathematics and Computational Thinking
- Constructing Explanations and Designing Solutions
- Engaging in Argument from Evidence
- Obtaining, Evaluating, and Communicating Information

Math Practices

Students solve science and engineering challenges using math skills including:

- Analyzing and Interpreting Data
- Using Mathematics and Computational Thinking
- Developing and Using Models
- Obtaining, Evaluating, and Communicating Information

PERFORMANCE TASK

Be a Scientist Notebook

Student Journal

SIMULATIONS
Eyes are like cameras because they take pictures of the world all around. They send these pictures to the brain. The brain uses the information from the eyes to understand the world.

The Eyes You See

When you look at your eyes in a mirror, you can see these parts.

Introduction

Are You Eye-Wise?

The sclera is the white part of your eye. The iris is the colored part of your eye. The cornea covers the iris. The cornea lets light enter.

Your eyelids blink to keep your eyeballs clean, moist, and protected. The pupil gets bigger and smaller to let in the light you need in order to see.

Your eyeballs sit in empty spaces in your skull called eye sockets.

The Eye Inside

Your eyes have many parts you cannot see. A clear eye lens is behind each iris. The lens collects light and then moves it back to the retina.

The retina has cells called rods and cones. Rods help you see black, white, and gray while cones help you see other colors. The rods and cones of the retina change all the shapes and colors you see into nerve messages. The nerve messages travel along nerve paths to the brain. Your brain reads these messages, and then you can tell what you are seeing.

Text Evidence

1. How do you know that The Way Eyes See It is a nonfiction text? Identify the text features that tell you this.

2. Read the book again with a partner. Make a Venn diagram to compare human eyes with the eyes of one animal described in the book.

3. What is the meaning of the word pupil on page 2? What is another meaning for the word pupil? What clues in the text show you which meaning to use on page 2?

4. Find out more about the human eye. Use a Venn diagram to compare two parts of the human eye. Write a paragraph to describe how these parts are similar and how they are different.

Literacy Practices

Students hone close reading, writing, and communication skills, develop solutions to real-world challenges while learning about exciting science content.

• Build Literacy Skills and Science Knowledge with Content-Rich Text
• Obtain, Evaluate, and Communicate Findings Effectively in Response to Tasks
• Engage in Arguments From Evidence and Apply Reasoning Skills
• Develop Research and Close-Reading Skills
• Advance Communication and Writing Skills with Text-Dependent Questions
• Develop Summary and Text-Evidence Skills
• Make Fiction and Informational Text Connections

Hi, I’m Antonio and I’m one of the STEM Career Kids! We’ll lead your students through Inspire Science!
Preparing the Next Generation of Innovators

The pace of change is accelerating. The challenges your students will face in their careers will likely be ones that don’t even exist yet. Their future will require problem-solving skills that go beyond the status quo. Inspire Science is designed to help today’s students prepare for any future they may face through an emphasis on problem-based and career-based learning. With Inspire Science, your students will learn to think like scientists and engineers, and develop the skills they need to create solutions to everyday challenges.

Problem-Based Learning

Empower students to develop critical-thinking through Inspire Science’s problem-based learning components.
Inspiring

Career-Based Learning

Future Career
Ocean Engineer Have you ever wondered what lies on the ocean floor? An ocean engineer studies this mysterious part of Earth. They develop vehicles that explore parts of the ocean floor that are dangerous for humans to go to. Ocean engineers identify the effect of the ocean on the shore and restore beaches that have worn away. They also examine coastal ecosystems for changes. These engineers are looking for safe ways to drill for oil and natural gas on the ocean floor.

HIRO
Ocean Engineer

INSPIRE CURIOSITY WITH THE STEM CAREER KIDS

Watch STEM Career Kid Videos at Inspire-Science.com/career_kids
A Flexible, Digital, Learning Experience with Print Where It Matters Most
Components Overview

DIGITAL AND PHYSICAL

TEACHER’S EDITION
(Grades K-5)

BE A SCIENTIST NOTEBOOK
(Grades K-5)

LEVELED READERS
(Grades K-5)
Available in Spanish

SCIENCE PAIRED READ ALOUDS
(Grades K-2)
Available in Spanish

SCIENCE HANDBOOK
(Grades K-5)
Available in Spanish

PHYSICAL

LAB KITS
Inspire Science lab kits contain hands-on activity materials clearly labeled and correlated to each module.

DIGITAL

Digital versions of the student books include audio, dynamic search tools, text highlighting, and more.

GRACE
Computer Programmer