Glencoe Science—Your Partner in Understanding and Implementing NGSS*

Ease the Transition to Next Generation Science Standards

Meeting NGSS
Glencoe Science helps ease the transition to Next Generation Science Standards (NGSS). Our middle school science programs ensure you are fully aligned to:

- Performance Expectations
- Science and Engineering Practices
- Disciplinary Core Ideas
- Crosscutting Concepts

We are committed to ensuring that you have the tools and resources necessary to meet the expectations for the next generation of science standards.

What is NGSS?
The purpose of the NGSS Framework is to act as the foundation for science education standards while describing a vision of what it means to be proficient in science. It emphasizes the importance of the practices of science where the content becomes a vehicle for teaching the processes of science.

Why NGSS?
The NGSS were developed in an effort to create unified standards in science education that consider content, practices, pedagogy, curriculum, and professional development. The standards provide all students with an internationally benchmarked education in science.

Correlation of NGSS Performance Expectations to Science

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS1</td>
<td>Matter and Its Interaction</td>
<td>MS-LS1</td>
<td>Heredity: Inheritance and Variation of Traits</td>
</tr>
<tr>
<td>MS-PS2</td>
<td>Motion and Stability: Forces and Interactions</td>
<td>MS-LS2</td>
<td>Biological Evolution: Unity and Diversity</td>
</tr>
<tr>
<td>MS-PS3</td>
<td>Energy</td>
<td>MS-ESS1</td>
<td>Earth’s Place in the Universe</td>
</tr>
<tr>
<td>MS-PS4</td>
<td>Waves and Their Applications in Technologies for Information Transfer</td>
<td>MS-ESS2</td>
<td>Earth’s Systems</td>
</tr>
<tr>
<td>MS-LS1</td>
<td>From Molecules to Organisms: Structures and Processes</td>
<td>MS-ESS3</td>
<td>Earth and Human Activity</td>
</tr>
<tr>
<td>MS-LS2</td>
<td>Ecosystems: Interactions, Energy, and Dynamics</td>
<td>MS-ETS1</td>
<td>Engineering Design</td>
</tr>
</tbody>
</table>

*Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
The Correlation Table lists a Performance Expectation that integrates a combination of Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts.

Performance Expectations
are tasks to evaluate student’s knowledge. Each Performance Expectation is correlated to an Applying Practices activity written specifically for the purpose. These activities can be found in the resources for the section listed.

Science and Engineering Practices
are skills that scientists and engineers use in their work. Each Practice is correlated to a part of the Science and Engineering Practices Handbook, which can be found in the program resources.

Disciplinary Core Ideas
are the content knowledge students will need to learn. These are correlated to the main student text.

Crosscutting Concepts
are themes that appear throughout all branches of science and engineering. These are not directly correlated but are found implicitly in the other correlations listed on the page.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1</td>
<td>From Molecules to Organisms: Structures and Processes</td>
<td></td>
</tr>
<tr>
<td>MS-LS1-1</td>
<td>Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
 - Planning and Carrying Out Investigations
 - Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.
 - **Student Edition:**
 - Launch Lab 9, 43, 707
 - MiniLab 54, 103
 - Skill Practice 59
 - Lab 106-107

- **Disciplinary Core Ideas**
 - LS1.A
 - **Structure and Function**
 - All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).

- **Crosscutting Concepts**
 - Scale, Proportion, and Quantity
 - Phenomena that can be observed at one scale may not be observable at another scale.
 - **Student Edition:**
 - Launch Lab 43
 - MiniLab 54
 - Skill Practice 59

- **Connections to Engineering, Technology and Applications of Science**
 - Interdependence of Science, Engineering, and Technology
 - Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.
 - **Student Edition:**
 - Launch Lab 43
 - Skill Practice 59

Find it here!
Integrated iScience Course 2 (Leopard)

MS-PS1 Matter and Its Interactions

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
</table>
| MS-PS1-1 | **Develop models to describe the atomic composition of simple molecules and extended structures.**
 Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.
 Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.
 Refer to the Project-Based Activity titled “Model Molecules” | |

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop and use a model to predict and/or describe phenomena.
 Teacher Edition: DI 377

Disciplinary Core Ideas

PS1.A Structure and Properties of Matter
- Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms.
- Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals).
 Student Edition: 351-352, 354, 376
 Teacher Edition: GQ 351, 354, 376; VL 352
 Addressed in *Integrated iScience Course 3 (Owl)*

Crosscutting Concepts

Scale, Proportion, and Quantity
- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
 Teacher Edition: DI 377

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GO</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

MS-PS1 Matter and Its Interactions continued

MS-PS1-2
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.

Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.

Refer to the Project-Based Activity titled “A Tale of Two Changes”

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 6-8 builds on K-5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to determine similarities and differences in findings.

Student Edition: Launch Lab 374
Skill Practice 365

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Student Edition: Launch Lab 374
Skill Practice 365

Disciplinary Core Ideas

PS1.A Structure and Properties of Matter
- Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it.

Student Edition: 358-363, 374
Teacher Edition: GQ 374; IM 346H

PS1.B Chemical Reactions
- Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.

Student Edition: 352, 375-376
Teacher Edition: GQ 376

Crosscutting Concepts

Patterns
- Macroscopic patterns are related to the nature of microscopic and atomic-level structure.

Refer to the Project-Based Activity titled “A Tale of Two Changes”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

AC Activity
CD Cultural Diversity
CIS Careers in Science
DI Differentiated Instruction
FF Fun Fact
GO Guiding Questions
IWB Interactive Whiteboard Strategy
MS Math Skills
RS Reading Strategy
RWS Real-World Science
SCB Science Content Background
TA Technology Activity
TD Teacher Demo
TL Technology Lab
VI Visual Literacy

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS1</td>
<td>Matter and Its Interactions continued</td>
<td>Addressed in Integrated iScience Course 1 (Frog)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Addressed in Integrated iScience Course 3 (Owl)</td>
</tr>
<tr>
<td>MS-PS1-3</td>
<td>Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.</td>
<td>The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.</td>
<td>Assessment Boundary: Assessment is limited to qualitative information.</td>
</tr>
<tr>
<td></td>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gathering, evaluating, and communicating information in 6-8 builds on K-5 and progresses to evaluating the merit and validity of ideas and methods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or now supported by evidence.</td>
<td>Refer to the Project-Based Activity titled “Protect Your Noggin”</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

PS1.A	Structure and Properties of Matter	
	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it.	Student Edition: 358-363, 374
		Teacher Edition: GQ 374, IM 346H

PS1.B	Chemical Reactions	
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.	Student Edition: 352, 375-376
		Teacher Edition: GQ 376

Crosscutting Concepts

<table>
<thead>
<tr>
<th></th>
<th>Connections to Engineering, Technology, and Applications of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td></td>
<td>Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.</td>
</tr>
</tbody>
</table>

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS1</td>
<td>Matter and Its Interactions continued</td>
<td>Refer to the Project-Based Activity titled “Particles in Motion”</td>
</tr>
<tr>
<td>MS-PS1-4</td>
<td>Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.</td>
<td>Refer to the Project-Based Activity titled “Particles in Motion”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
- Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop a model to predict and/or describe phenomena.

Disciplinary Core Ideas

PS1.A Structure and Properties of Matter
- Gases and liquids are made of molecules or inert atoms that are moving about relative to each other.

- In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations.

- The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter.

PS3.A Definitions of Energy
- The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4)

- The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system’s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system’s total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary)

Note: Correlation continues on the next page
Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Student Edition:
MiniLab 452

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS1</td>
<td>Matter and Its Interactions continued</td>
<td>Refer to the Project-Based Activity titled “All Things Being Equal”</td>
</tr>
</tbody>
</table>

MS-PS1-5
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.

Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop a model to describe unobservable mechanisms.

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

- Laws are regularities or mathematical descriptions of natural phenomena.

Disciplinary Core Ideas

PS1.B

Chemical Reactions

- Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.

- The total number of each type of atom is conserved, and thus the mass does not change.

Crosscutting Concepts

Energy and Matter

- Matter is conserved because atoms are conserved in physical and chemical processes.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS1</td>
<td>Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.*</td>
<td>Addressed in Integrated iScience Course 3 (Owl)</td>
</tr>
<tr>
<td>MS-PS1-6</td>
<td>Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

- Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. Refer to the Project-Based Activity titled “Warm It Up!”

Disciplinary Core Ideas

PS1.B Chemical Reactions

- Some chemical reactions release energy, others store energy. Addressed in Integrated iScience Course 1 (Frog) Addressed in Integrated iScience Course 3 (Owl)

ETS1.B Developing Possible Solutions

- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. Addressed in Integrated iScience Course 3 (Owl)

ETS1.C Optimizing the Design Solution

- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1-6)

- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)

Crosscutting Concepts

Energy and Matter

- The transfer of energy can be tracked as energy flows through a designed or natural system. Refer to the Project-Based Activity titled “Warm It Up!”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GO</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>
MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.*

Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.

Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.

Refer to the Project-Based Activity titled “Cracking Up”.

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions by multiple sources of evidence consistent with scientific ideas, principles, and theories.

• Apply scientific ideas or principles to design an object, tool, process or system.

Disciplinary Core Ideas

PS2.A Forces and Motion
• For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton’s third law).

Student Edition: 716-717
Teacher Edition: TD 713

Crosscutting Concepts

Systems and System Models
• Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.

Teacher Edition: TD 713

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World
• The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Student Edition: Lab 716-717

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
MS-PS2-2

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Clarification Statement: Emphasis is on balanced (Newton’s First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton’s Second Law), frame of reference, and specification of units.

Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.

Refer to the Project-Based Activity titled “Putting the Shot in Motion”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

- Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Disciplinary Core Ideas

PS2.A

Forces and Motion

- The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion.

- All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.

Student Edition:
- 705, 709-712, 714
- Launch Lab 709
- MiniLab 703, 710
- Skill Practice 707
- Lab 716-717
- Teacher Edition:
 - DI 705; TD 705, 709
 - GO 705, 710, 711, 712; IM 688H; RWS 715; SCB 688F; VL 711, 712, 714
 - 691-692, 696-697
 - GQ 688, 690, 691, 697; SCB 688E; VL 692, 696, 697

Teacher Edition:
- 691-692, 696-697

Student Edition:
- 691-692, 696-697
- Teacher Edition:
 - GO 688, 690, 691, 697; SCB 688E; VL 692, 696, 697

Note: Correlation continues on the next page
Crosscutting Concepts

Stability and Change

- Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales.

Student Edition:
- Launch Lab 701, 709
- MiniLab 703, 710
- Skill Lab 707
- Lab 716-717

Teacher Edition:
- TD 709

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
<td>FF</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GQ</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IWB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IWB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IWB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IWB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
</tbody>
</table>
MS-PS2-3

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.

Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6-8 builds from grades K-5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

- **Clarification Statement:** Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

Disciplinary Core Ideas

PS2.B Types of Interactions

- Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural or designed systems.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

<table>
<thead>
<tr>
<th>LOCATION ABBREVIATION KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
</tr>
<tr>
<td>CD</td>
</tr>
<tr>
<td>CIS</td>
</tr>
<tr>
<td>DI</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>GO</td>
</tr>
<tr>
<td>IWB</td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td>RA</td>
</tr>
<tr>
<td>RS</td>
</tr>
<tr>
<td>SCB</td>
</tr>
<tr>
<td>TA</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>TL</td>
</tr>
</tbody>
</table>
MS-PS2-4: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.

Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.

The performance expectation above was developed using the following elements from the NRC document A Framework for K–12 Science Education:

Science and Engineering Practices

- Engaging in Argument from Evidence
 - Engaging in argument from evidence in 6-8 builds from K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.
 - Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Connections to Nature of Science

- Scientific Knowledge is Based on Empirical Evidence
 - Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Disciplinary Core Ideas

PS2.B: Types of Interactions

- Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.

Crosscutting Concepts

- Systems and System Models
 - Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS2</td>
<td>Motion and Stability: Forces and Interactions continued</td>
<td></td>
</tr>
<tr>
<td>MS-PS2-5</td>
<td>Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.</td>
<td></td>
</tr>
</tbody>
</table>

Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.

Assessment Boundary: Assessment is limited to electric and magnetic fields, and limited to qualitative evidence for the existence of fields.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Planning and Carrying Out Investigations**
 - Planning and carrying out investigations to answer questions or test solutions to problems in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

 - **Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the goals of the investigation.**

 Refer to the Project-Based Activity titled “Hands Off!”

Disciplinary Core Ideas

- **PS2.B Types of Interactions**
 - Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively).

 Addressed in Integrated iScience Course 1 (Frog)

 Addressed in Integrated iScience Course 3 (Owl)

Crosscutting Concepts

- **Cause and Effect**
 - Cause and effect relationships may be used to predict phenomena in natural or designed systems.

 Refer to the Project-Based Activity titled “Hands Off!”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

Code	**Title/Text**	**Location**
MS-PS3 | Energy | Refer to the Project-Based Activity titled “Energy in Motion”

MS-PS3-1

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Construct and interpret graphical displays of data to identify linear and nonlinear relationships.

Refer to the Project-Based Activity titled “Energy in Motion”

Disciplinary Core Ideas

PS3.A

Definitions of Energy

- Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed.

Student Edition: 429
Teacher Edition: GQ 429; SCB 424E

Crosscutting Concepts

Scale, Proportion, and Quantity

- Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

Refer to the Project-Based Activity titled “Energy in Motion”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

- **AC** Activity
- **CD** Cultural Diversity
- **CIS** Careers in Science
- **DI** Differentiated Instruction
- **FF** Fun Fact
- **GO** Guiding Questions
- **IWB** Interactive Whiteboard Strategy
- **MS** Math Skills
- **RS** Reading Strategy
- **RWS** Real-World Science
- **SCB** Science Content Background
- **TA** Technology Activity
- **TD** Teacher Demo
- **VL** Visual Literacy
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS3</td>
<td>Energy continued</td>
<td></td>
</tr>
<tr>
<td>MS-PS3-2</td>
<td>Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.</td>
<td></td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.

Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop a model to describe unobservable mechanisms.

Disciplinary Core Ideas

PS3.A Definitions of Energy
- A system of objects may also contain stored (potential) energy, depending on their relative positions.

Crosscutting Concepts

System and System Models
- Models can be used to represent systems and their interactions - such as inputs, processes, and outputs - and energy and matter flows within systems.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS3</td>
<td>Apply scientific principles to design, construct, and test a device that</td>
<td>Refer to the Project-Based Activity titled “Cookin’ with the Sun”</td>
</tr>
<tr>
<td></td>
<td>either minimizes or maximizes thermal energy transfer.*</td>
<td></td>
</tr>
<tr>
<td>MS-PS3-3</td>
<td>Clarity Statement: Examples of devices could include an insulated box,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a solar cooker, and a Styrofoam cup.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment does not include calculating the total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>amount of thermal energy transferred.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

- Constructing Explanations and Designing Solutions
 - Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.

Disciplinary Core Ideas

PS3.A Definitions of Energy
- Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

PS3.B Conservation of Energy and Energy Transfer
- Energy is spontaneously transferred out of hotter regions or objects and into colder ones.

ETS1.A Defining and Delimiting an Engineering Problem
- The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary)

ETS1.B Developing Possible Solutions
- A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary)

Crosscutting Concepts

Energy and Matter
- The transfer of energy can be tracked as energy flows through a designed or natural system.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

- Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Disciplinary Core Ideas

PS3.A Definitions of Energy
- Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

PS3.B Conservation of Energy and Energy Transfer
- The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.

Crosscutting Concepts

Scale, Proportion, and Quantity
- Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS3</td>
<td>Energy continued</td>
<td>Refer to the Project-Based Activity titled “Tearin’ It Up!”</td>
</tr>
</tbody>
</table>
| **MS-PS3-5** | **Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.**
Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.
Assessment Boundary: Assessment does not include calculations of energy. | |

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

- Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon.

<table>
<thead>
<tr>
<th></th>
<th>Student Edition:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MiniLab 438</td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

Science knowledge is based upon logical and conceptual connections between evidence and explanations

<table>
<thead>
<tr>
<th></th>
<th>Student Edition:</th>
</tr>
</thead>
</table>
| | MiniLab 438
| | Teacher Edition: TD 437 |

Disciplinary Core Ideas

PS3.B

Conservation of Energy and Energy Transfer

When the motion energy of an object changes, there is inevitably some other change in energy at the same time.

<table>
<thead>
<tr>
<th></th>
<th>Student Edition:</th>
</tr>
</thead>
</table>
| | 436-437
| | Teacher Edition: GQ 437 |

Crosscutting Concepts

Energy and Matter

Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).

<table>
<thead>
<tr>
<th></th>
<th>Student Edition:</th>
</tr>
</thead>
</table>
| | MiniLab 438
| | Teacher Edition: TD 437 |

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

<table>
<thead>
<tr>
<th>LOCATION ABBREVIATION KEY</th>
<th>FF</th>
<th>GO</th>
<th>RS</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Activity</td>
<td>Fun Fact</td>
<td>Guiding Questions</td>
<td>Reading Strategy</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>CD Cultural Diversity</td>
<td>IWB Interactive Whiteboard Strategy</td>
<td>RWS Real-World Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS Careers in Science</td>
<td>MS Math Skills</td>
<td>SCB Science Content Background</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI Differentiated Instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS4</td>
<td>Waves and their Applications in Technologies for Information Transfer</td>
<td></td>
</tr>
<tr>
<td>MS-PS4-1</td>
<td>Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.</td>
<td>Addressed in Integrated iScience Course 1 (Frog) Addressed in Integrated iScience Course 3 (Owl)</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.

Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Using Mathematics and Computational Thinking
Mathematical and computational thinking at the 6-8 level builds on K-5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

• Use mathematical representations to describe and/or support scientific conclusions and design solutions. Refer to the Project-Based Activity titled “Don’t Make Waves!”

Connections to Nature of Science
Scientific Knowledge is Based on Empirical Evidence
• Science knowledge is based upon logical and conceptual connections between evidence and explanations. Refer to the Project-Based Activity titled “Don’t Make Waves!”

Disciplinary Core Ideas

PS4.A Wave Properties
• A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. Addressed in Integrated iScience Course 1 (Frog) Addressed in Integrated iScience Course 3 (Owl)

Crosscutting Concepts

Patterns
• Graphs and charts can be used to identify patterns in data. Refer to the Project-Based Activity titled “Don’t Make Waves!”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS4</td>
<td>Waves and their Applications in Technologies for Information Transfer</td>
<td></td>
</tr>
<tr>
<td>MS-PS4.2</td>
<td>Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the Project-Based Activity titled “Build a Better Room”

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop and use a model to describe phenomena.

Student Edition:

- MiniLab 431
- Teacher Edition: TD 433

Disciplinary Core Ideas

PS4.A Wave Properties

- A sound wave needs a medium through which it is transmitted.

Student Edition:

- 431
- Teacher Edition: SCB 424E

PS4.B Electromagnetic Radiation

- When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light.

- The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends.

- A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media.

- However, because light can travel through space, it cannot be a matter wave, like sound or water waves.

Student Edition:

- 432

Addressed in Integrated iScience Course 1 (Frog)
Addressed in Integrated iScience Course 3 (Owl)

Crosscutting Concepts

Structure and Function

Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.

Refer to the Project-Based Activity titled “Build a Better Room”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS4</td>
<td>Waves and their Applications in Technologies for Information Transfer continued</td>
</tr>
</tbody>
</table>

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.

Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in 6-8 builds on K-5 and progresses to evaluating the merit and validity of ideas and methods.
- Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.

Disciplinary Core Ideas

PS3.C Information Technologies and Instrumentation

- Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.

Crosscutting Concepts

Structure and Function

- Structures can be designed to serve particular functions.

Connections to Engineering, Technology, and Applications of Science

- Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations.

Connections to Nature of Science

- Advances in technology influence the progress of science and science has influenced advances in technology.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1</td>
<td>From Molecules to Organisms: Structures and Processes</td>
<td>Refer to the Project-Based Activity titled “It’s alive! Or is it?”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.

- Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.

Disciplinary Core Ideas

LS1.A Structure and Function

- All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).

Crosscutting Concepts

Scale, Proportion, and Quantity

- Phenomena that can be observed at one scale may not be observable at another scale.

Connections to Engineering, Technology and Applications of Science

Interdependence of Science, Engineering, and Technology

- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

Location Abbreviation Key

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1</td>
<td>From Molecules to Organisms: Structures and Processes continued</td>
<td>Refer to the Project-Based Activity titled “Engineering a Cell”</td>
</tr>
<tr>
<td>MS-LS1-2</td>
<td>Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.</td>
<td>The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.</td>
<td></td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop and use a model to describe phenomena.

Disciplinary Core Ideas

LS1.A Structure and Function

- Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.

Crosscutting Concepts

Structure and Function

- Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
MS-LS1-3

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.

Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.

Refer to the Project-Based Activity titled “The knee bone’s connected to the...”

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.

Student Edition:
- MiniLab 103
- Skill Practice 243
- Lab 106-107, 260-261

Disciplinary Core Ideas

LS1.A Structure and Function

- In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.

Student Edition:
- 97, 99-104, 231-241, 245-251, 255-256
- Teacher Edition:

Crosscutting Concepts

Systems and System Models

- Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems.

Student Edition:
- 103-104
- MiniLab 103
- Skill Practice 243
- Lab 106-107, 260-261
- Teacher Edition:
 - AC 97, DI 103

Connections to Nature of Science

Science is a Human Endeavor

- Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Refer to the Project-Based Activity titled “The knee bone’s connected to the...”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

ALIGNMENT GUIDE • CORRELATIONS

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Science and Engineering Practices

Engaging in Argument from Evidence

- Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Disciplinary Core Ideas

LS1.B Growth and Development of Organisms

- Animals engage in characteristic behaviors that increase the odds of reproduction.

- Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.

Crosscutting Concepts

Cause and Effect

- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
MS-LS1 From Molecules to Organisms: Structures and Processes continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1-5</td>
<td>Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.</td>
<td>Refer to the Project-Based Activity titled “Ready, Set, Grow!”</td>
</tr>
</tbody>
</table>

Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.

Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Disciplinary Core Ideas

LS1.B Growth and Development of Organisms

- Genetic factors as well as local conditions affect the growth of the adult plant.

Refer to the Project-Based Activity titled “Ready, Set, Grow!”

Crosscutting Concepts

Cause and Effect

- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

Refer to the Project-Based Activity titled “Ready, Set, Grow!”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

- **AC** Activity
- **CD** Cultural Diversity
- **CIS** Careers in Science
- **DI** Differentiated Instruction
- **FF** Fun Fact
- **GO** Guiding Questions
- **IWB** Interactive Whiteboard Strategy
- **MS** Math Skills
- **RS** Reading Strategy
- **RWS** Real-World Science
- **SCB** Science Content Background
- **TA** Technology Activity
- **TD** Teacher Demo
- **VL** Visual Literacy
Disciplinary Core Ideas

LS1.C Organization for Matter and Energy Flow in Organisms

- Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use.

PS3.D Energy in Chemical Processes and Everyday Life

- The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. *(secondary to MS-LS1-6)*

Crosscutting Concepts

Energy and Matter

- Within a natural system, the transfer of energy drives the motion and/or cycling of matter.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1</td>
<td>From Molecules to Organisms: Structures and Processes continued</td>
<td>Refer to the Project-Based Activity titled “You Are What You Eat”</td>
</tr>
<tr>
<td>MS-LS1-7</td>
<td>Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.</td>
<td></td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.

Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop a model to describe unobservable mechanisms.

Disciplinary Core Ideas

- **LS1.C** Organization for Matter and Energy Flow in Organisms
 - Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy.

PS3.D Energy in Chemical Processes and Everyday Life

- Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. *(secondary to MS-LS1-7)*

Crosscutting Concepts

- **Energy and Matter**
 - Matter is conserved because atoms are conserved in physical and chemical processes.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS1-8</td>
<td>Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.</td>
<td>Refer to the Project-Based Activity titled “It Makes Sense!”</td>
</tr>
</tbody>
</table>

Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Obtaining, Evaluating, and Communicating Information

- Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.

Refer to the Project-Based Activity titled “It Makes Sense!”

Disciplinary Core Ideas

LS1.D Information Processing

- Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.

Student Edition: 248-250
Teacher Edition: GQ 248, 249, 250; VL 249

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural systems.

Student Edition: MiniLab 250

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC Activity</th>
<th>CD Cultural Diversity</th>
<th>CIS Careers in Science</th>
<th>DI Differentiated Instruction</th>
<th>FF Fun Fact</th>
<th>GQ Guiding Questions</th>
<th>IWB Interactive Whiteboard Strategy</th>
<th>MS Math Skills</th>
<th>RS Reading Strategy</th>
<th>RWS Real-World Science</th>
<th>SCB Science Content Background</th>
<th>TA Technology Activity</th>
<th>TD Teacher Demo</th>
<th>VL Visual Literacy</th>
</tr>
</thead>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Ecosystems: Interactions, Energy, and Dynamics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2</td>
<td>Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.</td>
<td>Refer to the Project-Based Activity titled “The Fox and the Hare”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to provide evidence for phenomena.

 Student Edition: Launch Lab 317

Disciplinary Core Ideas

LS2.A Interdependent Relationships in Ecosystems

- Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors.

 Student Edition: 309-313

- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction.

 Student Edition: 318-319

- Growth of organisms and population increases are limited by access to resources.

 Student Edition: 318-319

Crosscutting Concepts

Cause and Effect

- Causes and effect relationships may be used to predict phenomena in natural or designed systems.

 Student Edition: Launch Lab 317

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Activity</th>
<th>FF</th>
<th>GO</th>
<th>IW</th>
<th>MS</th>
<th>RS</th>
<th>RWS</th>
<th>SCB</th>
<th>TA</th>
<th>TD</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
<td>FF</td>
<td>GO</td>
<td>IW</td>
<td>MS</td>
<td>RS</td>
<td>RWS</td>
<td>SCB</td>
<td>TA</td>
<td>TD</td>
<td>VL</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td></td>
</tr>
</tbody>
</table>

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2</td>
<td>Ecosystems: Interactions, Energy, and Dynamics continued</td>
<td></td>
</tr>
<tr>
<td>MS-LS2-2</td>
<td>Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.</td>
<td>Refer to the Project-Based Activity titled “The Hungry Games: Eat or Be Eaten”</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena.

Disciplinary Core Ideas

LS2.A Interdependent Relationships in Ecosystems

- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared.

Crosscutting Concepts

Patterns

- Patterns can be used to identify cause and effect relationships.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2</td>
<td>Ecosystems: Interactions, Energy, and Dynamics continued</td>
<td>Refer to the Project-Based Activity titled “Web of Life”</td>
</tr>
<tr>
<td>MS-LS2-3</td>
<td>Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.</td>
<td>Refer to the Project-Based Activity titled “Web of Life”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.

Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Disciplinary Core Ideas

LS2.B Cycle of Matter and Energy Transfer in Ecosystems

- Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

Crosscutting Concepts

- **Energy and Matter**
 - The transfer of energy can be tracked as energy flows through a natural system.

Connections to Nature of Science

- **Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>FF</th>
<th>RS</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Fun Fact</td>
<td>Reading Strategy</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>CD</td>
<td>GQ</td>
<td>RWS</td>
<td>TD</td>
</tr>
<tr>
<td>Cultural Diversity</td>
<td>Guiding Questions</td>
<td>Real-World Science</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>IWB</td>
<td>SCB</td>
<td>VL</td>
</tr>
<tr>
<td>Careers in Science</td>
<td>Interactive Whiteboard Strategy</td>
<td>Science Content Background</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated Instruction</td>
<td>Math Skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2</td>
<td>Ecosystems: Interactions, Energy, and Dynamics continued</td>
<td>Refer to the Project-Based Activity titled “Snake Invaders”</td>
</tr>
</tbody>
</table>

MS-LS2-4

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Science disciplines share common rules of obtaining and evaluating empirical evidence.

Disciplinary Core Ideas

LS2.C

Ecosystem Dynamics, Functioning, and Resilience

- Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations.

Crosscutting Concepts

Stability and Change

- Small changes in one part of a system might cause large changes in another part.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS2-5</td>
<td>Evaluate competing design solutions for maintaining biodiversity and ecosystem services.*</td>
<td>Addressed in Integrated iScience Course 2 (Leopard) Addressed in Integrated iScience Course 3 (Owl)</td>
</tr>
</tbody>
</table>

Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.

Science and Engineering Practices

- **Engaging in Argument from Evidence**
 - Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).
 - Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
 - Refer to the Project-Based Activity titled “Good ‘grief’! The corals are dying!”

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>LS2.C</th>
<th>Ecosystem Dynamics, Functioning, and Resilience</th>
<th>Student Edition: 218</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS4.D</th>
<th>Biodiversity and Humans</th>
<th>Addressed in Integrated iScience Course 1 (Frog)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS1.B</th>
<th>Developing Possible Solutions</th>
<th>Student Edition: NOS 20-NOS 27, 4-5 Teacher Edition: GG NOS 27, 4; VL NOS 23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary)</td>
<td></td>
</tr>
</tbody>
</table>

Crosscutting Concepts

- **Stability and Change**
 - Small changes in one part of a system might cause large changes in another part. | Student Edition: Skill Lab 553 Lab 562-563 |
 - Influence of Science, Engineering, and Technology on Society and the Natural World
 - The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. | Student Edition: Skill Lab 553 Lab 562-563 |
 - Connections to Nature of Science
 - Science Addresses Questions About the Natural and Material World
 - Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. | Student Edition: Skill Lab 553 Lab 562-563 |

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS3</td>
<td>Heredity: Inheritance and Variation of Traits</td>
<td>Refer to the Project-Based Activity titled “Model Mighty Mutations”</td>
</tr>
</tbody>
</table>

MS-LS3-1

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.

Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop and use a model to describe phenomena.

Disciplinary Core Ideas

LS3.A Inheritance of Traits

- Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits.

Student Edition:

Launch Lab 174

Teacher Edition:

GQ 164, 174, 180; VL 164, 178

LS3.B Variation of Traits

- In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.

Student Edition:

136, 179-180, 205

Teacher Edition:

GQ 179-180

Crosscutting Concepts

Structure and Function

- Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

Student Edition:

179

Launch Lab 174

Teacher Edition:

DI 179

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

Location Abbreviation Key

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GQ</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS3</td>
<td>Heredity: Inheritance and Variation of Traits continued</td>
<td></td>
</tr>
<tr>
<td>MS-LS3-2</td>
<td>Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.</td>
<td>Refer to the Project-Based Activity titled "It's in the Cards".</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - **Student Edition:**
 - **Skill Practice 172**
 - **Lab 182-183**
 - **Teacher Edition:**
 - **TD 129**

Disciplinary Core Ideas

- **LS1.B Growth and Development of Organisms**
 - Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2)
 - **Student Edition:**
 - 11, 93 117-124, 129-133, 289-290
 - **Teacher Edition:**
 - GQ 11, 114, 117, 128, 129; SCB 114E, 114F

- **LS3.A Inheritance of Traits**
 - Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited.
 - **Student Edition:**
 - 124, 163-169, 205
 - **Teacher Edition:**
 - GQ 117, 124, 150, 163-165, 202

- **LS3.B Variation of Traits**
 - In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.
 - **Student Edition:**
 - 117-119, 159, 163-169
 - **Teacher Edition:**
 - GQ 118, 159, 160; VL 164

Crosscutting Concepts

- **Cause and Effect**
 - Cause and effect relationships may be used to predict phenomena in natural systems.
 - **Student Edition:**
 - Launch Lab 117
 - MiniLab 165
 - Skill Practice 172
 - Lab 182-183
 - Teacher Edition: DI 167
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS4</td>
<td>Biological Evolution: Unity and Diversity</td>
<td></td>
</tr>
<tr>
<td>MS-LS4-1</td>
<td>Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.</td>
<td></td>
</tr>
<tr>
<td>Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- **Analyses and Interpret Data to Determine Similarities and Differences in Findings.**
 - **Student Edition:** MiniLab 199

Disciplinary Core Ideas

LS4.A Evidence of Common Ancestry and Diversity

- The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.

- **Student Edition:** 193-199
 - **Teacher Edition:** GO 192, 193, 196; SCB 190E; VL 197

Crosscutting Concepts

Patterns

- Graphs, charts, and images can be used to identify patterns in data.

- **Student Edition:** MiniLab 199

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

- **Student Edition:** MiniLab 199

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GO</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

Code	**Title/Text**	**Location**
MS-LS4 | Biological Evolution: Unity and Diversity continued | Refer to the Project-Based Activity titled “It’s All Relative”

MS-LS4-2

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- Constructing Explanations and Designing Solutions
 - Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.

Disciplinary Core Ideas

- **LS4.A Evidence of Common Ancestry and Diversity**
 - Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.

Crosscutting Concepts

- **Patterns**
 - Patterns can be used to identify cause and effect relationships.

Connections to Nature of Science

- **Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>FF</th>
<th>RS</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Fun Fact</td>
<td>Reading Strategy</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>CD</td>
<td>GO</td>
<td>RWS</td>
<td>TD</td>
</tr>
<tr>
<td>Cultural Diversity</td>
<td>Guiding Questions</td>
<td>Real-World Science</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>IWB</td>
<td>SCB</td>
<td>VL</td>
</tr>
<tr>
<td>Careers in Science</td>
<td>Interactive Whiteboard Strategy</td>
<td>Science Content Background</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated Instruction</td>
<td>Math Skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Biological Evolution: Unity and Diversity continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS4</td>
<td>Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.</td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.</td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze displays of data to identify linear and nonlinear relationships.

Refer to the Project-Based Activity titled “If you’ve seen one...”

Disciplinary Core Ideas

LS4.A Evidence of Common Ancestry and Diversity

- Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.

Student Edition: 216

Teacher Edition: GQ 216; SCB 190F; VL 216

Crosscutting Concepts

Patterns

- Graphs, charts, and images can be used to identify patterns in data.

Student Edition: 216

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>FF</th>
<th>RS</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Fun Fact</td>
<td>Reading Strategy</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>CD</td>
<td>GQ</td>
<td>RWS</td>
<td>TD</td>
</tr>
<tr>
<td>Cultural Diversity</td>
<td>Guiding Questions</td>
<td>Real-World Science</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>IWB</td>
<td>SCB</td>
<td>VL</td>
</tr>
<tr>
<td>Careers in Science</td>
<td>Interactive Whiteboard Strategy</td>
<td>Science Content Background</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated Instruction</td>
<td>Math Skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS-LS4 Biological Evolution: Unity and Diversity continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
</table>
| MS-LS4-4| **Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.**
 Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations. | Refer to the Project-Based Activity titled “Spot On” |

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.

Disciplinary Core Ideas

LS4.B Natural Selection

- Natural selection leads to the predominance of certain traits in a population, and the suppression of others.

Crosscutting Concepts

Cause and Effect

- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GQ</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-LS4</td>
<td>Biological Evolution: Unity and Diversity continued</td>
<td>Refer to the Project-Based Activity titled “Foods of the Future”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6-8 builds on K-5 experiences and progresses to evaluating the merit and validity of ideas and methods.

- Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.

Refer to the Project-Based Activity titled “Foods of the Future”

Disciplinary Core Ideas

LS4.B Natural Selection

- In *artificial* selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring.

Student Edition:

125, 209

Teacher Edition:

SCB 190F

Crosscutting Concepts

Cause and Effect

- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

Refer to the Project-Based Activity titled “Foods of the Future”

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

Teacher Edition:

DI 125, 209

Connections to Nature of Science

Science Addresses Questions About the Natural and Material World

- Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

Teacher Edition:

DI 209

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

<table>
<thead>
<tr>
<th>LOCATION ABBREVIATION KEY</th>
<th>FF</th>
<th>GO</th>
<th>RS</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Fun Fact</td>
<td>Guiding Questions</td>
<td>Reading Strategy</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>SCB</td>
<td>Science Content Background</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
MS-LS4 Biological Evolution: Unity and Diversity continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
</table>
| MS-LS4-6 | **Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.**
 Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.
 Assessment Boundary: Assessment does not include Hardy Weinberg calculations. | Refer to the Project-Based Activity titled “Population Probabilities” |

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

- **Using Mathematics and Computational Thinking**
 - Mathematical and computational thinking in 6-8 builds on K-5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.
 - Use mathematical representations to support scientific conclusions and design solutions.
 Refer to the Project-Based Activity titled “Population Probabilities”

Disciplinary Core Ideas

- **LS4.C Adaptation**
 - Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.
 Student Edition: 205-208
 Teacher Edition: GQ 190, 207, 208; IM 190H; SCB 190F

Crosscutting Concepts

- **Cause and Effect**
 - Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
 Student Edition: MiniLab 209

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

- AC Activity
- CD Cultural Diversity
- CIS Careers in Science
- DI Differentiated Instruction
- FF Fun Fact
- GO Guiding Questions
- IWB Interactive Whiteboard Strategy
- MS Math Skills
- RS Reading Strategy
- RWS Real-World Science
- SCB Science Content Background
- TA Technology Activity
- TD Teacher Demo
- VL Visual Literacy
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS1</td>
<td>Earth’s Place in the Universe</td>
<td>Refer to Project-Based Activity titled “Patterns in the Sky”</td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

- Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

 - Develop and use a model to describe phenomena.

Disciplinary Core Ideas

ESS1.A The Universe and Its Stars

- Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models.

ESS1.B Earth and the Solar System

- This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Note: Correlation continues on the next page
Crosscutting Concepts

Patterns
- Patterns can be used to identify cause-and-effect relationships.

Student Edition:
- Launch Lab 737
- MiniLab 740, 746
- Skill Practice 735
- Lab 752-753

Teacher Edition:
- TA 741; TD 739, 749

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

Student Edition:
- 729, 731-733, 739-741, 746-749
- Launch Lab 737
- MiniLab 740, 746
- Skill Practice 735
- Lab 752-753

Teacher Edition:
- AC 747; TA 741; TD 729, 749

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
<td></td>
</tr>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
<td></td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
<td></td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
<td></td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

44

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS1</td>
<td>Earth’s Place in the Universe continued</td>
<td>Refer to the Project-Based Activity titled “Gravity Glue”</td>
</tr>
</tbody>
</table>

Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).

Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop and use a model to describe phenomena.

Disciplinary Core Ideas

ESS1.A

- The Universe and Its Stars
 - Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe.

ESS1.B

- Earth and the Solar System
 - The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
 - The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.

Student Edition:
- MiniLab 728, 765
- Skill Practice 779

Teacher Edition:
- DI 729

Addressed in Integrated iScience Course 1 (Frog)

Addressed in Integrated iScience Course 3 (Owl)

Note: Correlation continues on the next page
Crosscutting Concepts

Systems and System Models
- Models can be used to represent systems and their interactions.

Connections to Nature of Science
- **Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
<td></td>
</tr>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
<td></td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
<td></td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
<td></td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
<td></td>
</tr>
</tbody>
</table>
MS-ESS1 Earth’s Place in the Universe continued

MS-ESS1-3

Analyzing and Interpreting Data

Analyze and interpret data to determine scale properties of objects in the solar system.

Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.

Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.

Refer to the Project-Based Activity titled “PBI: Planetary Bureau of Investigation”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to determine similarities and differences in findings.

Student Edition:
- MiniLab 765
- Teacher Edition:
 - DI 739, 767

Disciplinary Core Ideas

ESS1.B Earth and the Solar System

- The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.

Student Edition:
- 728, 763-769
- Teacher Edition:
 - GO 728, 760, 765, 768, 769; SCB 760E; VL 764, 767, 769

Crosscutting Concepts

Scale, Proportion, and Quantity

- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.

Student Edition:
- MiniLab 728, 765
- Teacher Edition:
 - DI 765

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems.

Teacher Edition:
- CD 769

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

Location Abbreviation Key

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CI</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FF</th>
<th>Fun Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS</th>
<th>Reading Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS1-4</td>
<td>Earth’s Place in the Universe continued</td>
<td>Addressed in Integrated iScience Course 3(Owl)</td>
</tr>
<tr>
<td></td>
<td>Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- Constructing Explanations and Designing Solutions
 - Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 - **Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.** **Addressed in Integrated iScience Course 3(Owl)**

Disciplinary Core Ideas

- **ESS1.C The History of Planet Earth**
 - The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. **Addressed in Integrated iScience Course 3(Owl)**

Crosscutting Concepts

- **Scale, Proportion, and Quantity**
 - Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. **Addressed in Integrated iScience Course 3(Owl)**

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GQ</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2</td>
<td>Earth's Systems</td>
<td></td>
</tr>
<tr>
<td>MS-ESS2-1</td>
<td>Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.</td>
<td>Refer to the Project-Based Activity titled “Rockin’ Around the Park”</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment Boundary: Assessment does not include the identification and naming of minerals.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop and use a model to describe phenomena.

Disciplinary Core Ideas

- **ESS2.A Earth’s Materials and Systems**
 - All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.

Crosscutting Concepts

- **Stability and Change**
 - Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

- AC: Activity
- CD: Cultural Diversity
- CIS: Careers in Science
- DI: Differentiated Instruction
- FF: Fun Fact
- GO: Guiding Questions
- IWB: Interactive Whiteboard Strategy
- MS: Math Skills
- RS: Reading Strategy
- RWS: Real-World Science
- SCB: Science Content Background
- TA: Technology Activity
- TD: Teacher Demo
- VL: Visual Literacy

Student Edition:
- Lab 490-491
- Teacher Edition:
- DI 473

Teacher Edition:
- GQ 471, 472, 473, 475, 476; SCB 570E; VL 471, 472, 475
MS-ESS2 Earth’s Systems continued

MS-ESS2-2

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.

Refer to the Project-Based Activity titled “Gravity Glue”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.

Disciplinary Core Ideas

ESS2.A

Earth’s Materials and Systems

- The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future.

ESS2.C

The Roles of Water in Earth’s Surface Processes

- Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.

Crosscutting Concepts

Scale, Proportion, and Quantity

- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-3</td>
<td>Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches). Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.</td>
<td>Refer to the Project-Based Activity titled “Movin’ Mountains”</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to provide evidence for phenomena.

Student Edition:
- Launch Lab 501
- Teacher Edition:
- TD 501

Connections to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

- Science findings are frequently revised and/or reinterpreted based on new evidence.

Student Edition:
- Launch Lab 501

Disciplinary Core Ideas

ESS1.C The History of Planet Earth

- Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESSE1.C GBE), (secondary to MS-ESS2-3)

Student Edition:
- 504
- Teacher Edition:
- GQ 504; SCB 498E; VL 504

ESS2.B Plate Tectonics and Large-Scale System Interactions

- Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.

Student Edition:
- 501-505
- Teacher Edition:
- GQ 502; SCB 498E; VL 502

Crosscutting Concepts

Cause and Effect

- Patterns in rates of change and other numerical relationships can provide information about natural systems.

Refer to the Project-Based Activity titled “Movin’ Mountains”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>CD</th>
<th>Cultural Diversity</th>
<th>CIS</th>
<th>Careers in Science</th>
<th>DI</th>
<th>Differentiated Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>Fun Fact</td>
<td>GQ</td>
<td>Guiding Questions</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
<td>TD</td>
<td>Teacher Demo</td>
<td>VL</td>
<td>Visual Literacy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.

Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.

Refer to the Project-Based Activity titled “Campers in the Mist”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
 - Developing and Using Models
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop a model to describe unobservable mechanisms.

- **Disciplinary Core Ideas**
 - ESS2.C The Roles of Water in Earth’s Surface Processes
 - Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land.
 - Global movements of water and its changes in form are propelled by sunlight and gravity.

- **Crosscutting Concepts**
 - Energy and Matter
 - Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-5</td>
<td>Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation). Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.</td>
<td>Refer to the Project-Based Activity titled “Weather Wardrobe”</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.

- Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

Disciplinary Core Ideas

ESS2.C The Roles of Water in Earth’s Surface Processes

- The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.

ESS2.D Weather and Climate

- Because these patterns are so complex, weather can only be predicted probabilistically.

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural or designed systems.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
</tr>
</tbody>
</table>

FF Fun Fact **GQ** Guiding Questions **IWB** Interactive Whiteboard Strategy **MS** Math Skills

RS Reading Strategy **RWS** Real-World Science **SCB** Science Content Background

TA Technology Activity **TD** Teacher Demo **VL** Visual Literacy

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2</td>
<td>Earth’s Systems continued</td>
<td>Refer to the Project-Based Activity titled “As the Water Churns”</td>
</tr>
</tbody>
</table>
| MS-ESS2-6| Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.
Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect. | |

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop and use a model to describe phenomena.

Disciplinary Core Ideas

ESS2.C The Roles of Water in Earth’s Processes

- Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents.

ESS2.D Weather and Climate

- Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.

- The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

Crosscutting Concepts

Systems and System Models

- Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBEVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>GO</th>
<th>Guiding Questions</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>MS</td>
<td>Math Skills</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>SCB</td>
<td>Science Content Background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Constructing Explanations and Designing Solutions**
 - Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- **Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.**

Disciplinary Core Ideas

- **ESS3.A Natural Resources**
 - Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes.

Crosscutting Concepts

- **Cause and Effect**
 - Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Connections to Engineering, Technology, and Applications of Science

- **Influence of Science, Engineering, and Technology on Society and the Natural World**
 - All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS3</td>
<td>Earth and Human Activity continued</td>
<td>Refer to the Project-Based Activity titled “Shake, Rattle, and Roll!”</td>
</tr>
<tr>
<td>MS-ESS3-2</td>
<td>Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the</td>
<td>Refer to the Project-Based Activity titled “Shake, Rattle, and Roll!”</td>
</tr>
<tr>
<td></td>
<td>development of technologies to mitigate their effects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and severe weather, are preceded by phenomena that allow for reliable predictions, but others,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of natural hazards can be taken from interior processes (such as earthquakes and volcanic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(such as hurricanes, tornadoes, and floods). Examples of data can include the locations,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as satellite systems to monitor hurricanes or forest fires) or local (such as building basements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in tornado-prone regions or reservoirs to mitigate droughts).</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

- Analyze and interpret data to determine similarities and differences in findings.

Refer to the Project-Based Activity titled “Shake, Rattle, and Roll!”

Disciplinary Core Ideas

ESS3.B Natural Hazards

- Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.

Addressed in Integrated iScience Course 1 (Frog)

Addressed in Integrated iScience Course 3 (Owl)

Crosscutting Concepts

Patterns

- Graphs, charts, and images can be used to identify patterns in data.

Refer to the Project-Based Activity titled “Shake, Rattle, and Roll!”

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

Refer to the Project-Based Activity titled “Shake, Rattle, and Roll!”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS3</td>
<td>Earth and Human Activity continued</td>
<td>Refer to the Project-Based Activity titled “Who’s moving in next door?”</td>
</tr>
<tr>
<td>MS-ESS3-3</td>
<td>Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.*</td>
<td>Refer to the Project-Based Activity titled “Who’s moving in next door?”</td>
</tr>
</tbody>
</table>

Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- Apply scientific principles to design an object, tool, process or system.

Disciplinary Core Ideas

ES3.C Human Impacts on Earth Systems

- Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things.

- Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

Crosscutting Concepts

- Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
</tbody>
</table>

Alignment Guide • Correlations

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use.
Integrated iScience Course 2 (Leopard) continued

MS-ESS3 Earth and Human Activity continued

MS-ESS3-4

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.

Refer to the Project-Based Activity titled “7 Billion and Counting”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Refer to the Project-Based Activity titled “7 Billion and Counting”

Disciplinary Core Ideas

ESS3.C Human Impacts on Earth Systems

- Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

Student Edition:

589-602, 674, 686-687

Teacher Edition:

CD 601, 603; GQ 674

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Refer to the Project-Based Activity titled “7 Billion and Counting”

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

Refer to the Project-Based Activity titled “7 Billion and Counting”

Connections to Nature of Science

Science Addresses Questions About the Natural and Material World

- Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

Refer to the Project-Based Activity titled “7 Billion and Counting”

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>AC</th>
<th>Activity</th>
<th>FF</th>
<th>Fun Fact</th>
<th>RS</th>
<th>Reading Strategy</th>
<th>TA</th>
<th>Technology Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
<td>GO</td>
<td>Guiding Questions</td>
<td>RWS</td>
<td>Real-World Science</td>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
<td>IWB</td>
<td>Interactive Whiteboard Strategy</td>
<td>SCB</td>
<td>Science Content Background</td>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated Instruction</td>
<td>MS</td>
<td>Math Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrated iScience Course 2 (Leopard) continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS3</td>
<td>Earth and Human Activity continued</td>
<td></td>
</tr>
<tr>
<td>MS-ESS3-5</td>
<td>Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.</td>
<td>Refer to the Project-Based Activity titled “Question the Experts”</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6-8 builds on grades K-5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

- Ask questions to identify and clarify evidence of an argument.

Disciplinary Core Ideas

ESS3.D Global Climate Change

- Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities.

Crosscutting Concepts

Stability and Change

- Stability might be disturbed either by sudden events or gradual changes that accumulate over time.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activity</td>
</tr>
<tr>
<td>CD</td>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>CIS</td>
<td>Careers in Science</td>
</tr>
<tr>
<td>DI</td>
<td>Differentiated</td>
</tr>
<tr>
<td>FF</td>
<td>Fun Fact</td>
</tr>
<tr>
<td>GQ</td>
<td>Guiding Questions</td>
</tr>
<tr>
<td>IWB</td>
<td>Interactive</td>
</tr>
<tr>
<td>MS</td>
<td>Math Skills</td>
</tr>
<tr>
<td>RS</td>
<td>Reading Strategy</td>
</tr>
<tr>
<td>RWS</td>
<td>Real-World Science</td>
</tr>
<tr>
<td>SCB</td>
<td>Science Content Background</td>
</tr>
<tr>
<td>TA</td>
<td>Technology Activity</td>
</tr>
<tr>
<td>TD</td>
<td>Teacher Demo</td>
</tr>
<tr>
<td>VL</td>
<td>Visual Literacy</td>
</tr>
<tr>
<td>Code</td>
<td>Title/Text</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>MS-ETS1-1</td>
<td>Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.</td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6-8 builds on grades K-5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

- Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Disciplinary Core Ideas

ETS1.A Defining and Delimiting Engineering Problems

- The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

- The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
MS-ETS1 Engineering Design continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ETS1-2</td>
<td>Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.</td>
<td>Refer to the Project-Based Activity titled “Solutions for Pollution”</td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Engaging in Argument from Evidence**

 Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.

- Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

 Student Edition:

 Lab 716-717, 788-789

Disciplinary Core Ideas

- **ETS1.B Developing Possible Solutions**

 - There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.

 Student Edition:

 NOS 20-NOS 27, 4-5

 Teacher Edition:

 GQ NOS 24-NOS 25

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

| AC | Activity | CD | Cultural Diversity | CIS | Careers in Science | DI | Differentiated Instruction | FF | Fun Fact | GO | Guiding Questions | IWB | Interactive Whiteboard Strategy | MS | Math Skills | RS | Reading Strategy | RWS | Real-World Science | SCB | Science Content Background | TA | Technology Activity | TD | Teacher Demo | VL | Visual Literacy |
|-----|---------------------------|-----|--------------------|------|---------------------|-----|--------------------------|-----|----------------|-----|-------------------|------|----------------------|-----|-------------|-----|-------------------|-----|-----------------|-----|---------------|-----|---------------|-----|-----------------|
Integrated iScience Course 2 (Leopard) continued

Code	**Title/Text**	**Location**
MS-ETS1-3 | Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. | Refer to the Project-Based Activity titled “Build a Better Mousetrap… Car”

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to determine similarities and differences in findings.

Disciplinary Core Ideas

ETS1.B

Developing Possible Solutions

- There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.

- Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.

ETS1.C

Optimizing the Design Solution

- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.

Refer to the Project-Based Activity titled “Build a Better Mousetrap… Car”

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

LOCATION ABBREVIATION KEY

<p>| AC | Activity |
| CD | Cultural Diversity |
| CIS | Careers in Science |
| DI | Differentiated Instruction |
| FF | Fun Fact |
| GO | Guiding Questions |
| IWB | Interactive Whiteboard Strategy |
| MS | Math Skills |
| RS | Reading Strategy |
| RWS | Real-World Science |
| SCB | Science Content Background |
| TA | Technology Activity |
| TD | Teacher Demo |
| VL | Visual Literacy |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Title/Text</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ETS1-4</td>
<td>Engineering Design continued Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.</td>
<td>Refer to the Project-Based Activity titled “A Closer Look”</td>
</tr>
</tbody>
</table>

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- Developing and Using Models
 - Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

- Disciplinary Core Ideas
 - ETS1.B Developing Possible Solutions
 - A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.
 - Models of all kinds are important for testing solutions.

 - ETS1.C Optimizing the Design Solution
 - The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.

NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.