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Purpose of review

Based on interim results from an ongoing study, we have reported that consumption of a

high-fructose diet, but not a high-glucose diet, promotes the development of three of the

pathological characteristics associated with metabolic syndrome: visceral adiposity,

dyslipidemia, and insulin resistance. From these results and a review of the current

literature, we present two potential sequences of events by which fructose consumption

may contribute to metabolic syndrome.

Recent findings

The earliest metabolic perturbation resulting from fructose consumption is postprandia

hypertriglyceridemia, which may increase visceral adipose deposition. Visceral adiposity

contributes to hepatic triglyceride accumulation, novel protein kinase C activation, and

hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver

With insulin resistance, VLDL production is upregulated and this, along with systemic

free fatty acids, increase lipid delivery to muscle. It is also possible that fructose initiates

hepatic insulin resistance independently of visceral adiposity and free fatty acid delivery

By providing substrate for hepatic lipogenesis, fructose may result in a direct lipid

overload that leads to triglyceride accumulation, novel protein kinase C activation, and

hepatic insulin resistance.

Summary

Our investigation and future studies of the effects of fructose consumption may help to

clarify the sequence of events leading to development of metabolic syndrome.
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Introduction
Studies investigating the effects of fructose consumption

in humans and animals have been comprehensively

reviewed [1–3,4��,5��]. These reviews are in agreement

in their conclusions that, while there is strong evidence

that diets high in fructose can produce obesity, insulin

resistance/glucose intolerance, and dyslipidemia in

animals, direct experimental evidence that consumption

of fructose promotes the development of metabolic syn-

drome in humans is equivocal. We are currently conduct-

ing an investigation comparing the metabolic effects of

consuming beverages sweetened with fructose or glucose

providing 25% of energy requirements for 10 weeks in

older, overweight and obese men and women. Based on

interim results [6], we have reported that consumption of

the high-fructose diet promotes the development of three

of the pathological characteristics associated with meta-

bolic syndrome: dyslipidemia, insulin resistance, and
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increased visceral adiposity. These observations have

potentially important public health implications. In

addition, these results suggest that such investigations

may help to illuminate the causes and sequence of events

leading to the development of metabolic syndrome.

Rutledge and Adeli [7��] have recently outlined a poten-

tial sequence of events by which fructose consumption

may contribute to development of the metabolic syn-

drome. They suggest that increased VLDL production

induced by fructose increases visceral adiposity, which

leads to insulin resistance in adipose tissue and, sub-

sequently, to hepatic insulin resistance. We present this

sequence of events, along with supporting evidence from

the literature and from our current study. We then pre-

sent another scenario in which overconsumption of fruc-

tose may result in a lipid overload within the liver that

contributes to hepatic insulin resistance independently of

visceral adiposity.
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Fructose and hepatic lipogenesis/VLDL
production
Both our current study [6] and earlier data [8] demon-

strate that 10 weeks of fructose consumption markedly

increases circulating postprandial triglyceride concen-

trations in older adults. In short-term studies in younger

adults, we demonstrated that fructose consumption

increases postprandial triglyceride concentrations within

24 h [9,10], which suggests that postprandial hyper-

triglyceridemia is the earliest metabolic perturbation

associated with fructose consumption. The most likely

mechanism for the postprandial hypertriglyceridemia

is increased hepatic de-novo lipogenesis (DNL), which

in turn upregulates VLDL production and secretion.

Fructose consumption can promote hepatic lipogenesis

because, first, the liver is the main site of fructose

metabolism [11]; second, entry of fructose into glyco-

lysis via fructose-1-phosphate bypasses the main rate-

controlling step of glycolysis catalyzed by phosp-

hofructokinase, thus providing unregulated amounts

of lipogenic substrates acetyl-CoA and glycerol-3-

phosphate [11], and, third, fructose can activate sterol

receptor element binding protein-1c (SREBP-1c) inde-

pendently of insulin, which then activates genes involved

in DNL [12,13].

VLDL production and secretion are mainly regulated

by the availability of lipid substrate [14]. Apolipopro-

tein B100 (ApoB) is essential for the intracellular assem-

bly of triglyceride into VLDL. ApoB undergoes

co-translational and posttranslational degradation, and

its degradation is dramatically reduced when hepatic

lipid content is increased [15]. In subjects consuming

fructose, plasma ApoB concentrations were increased by

more than 25% [6].

Recently it was reported that the contribution of de novo

lipogenesis to fructose-induced hypertriacylglyceridemia

is small [16�]. In this acute study of 14 healthy men and

women, fructose contributed only 0.4% of the circulating

VLDL-triglyceride measured 6 h after consumption of a

high-fat (�60%), high-fructose (�40%) meal that con-

tained 250 mg D-[U13C]fructose. It is possible, however,

that the 6-h measurement of the incorporation of the 13C

label into VLDL may not accurately reflect the rate of

DNL. Fatty acids produced via DNL appear to be

partitioned into the liver cytosolic triglyceride storage

pool rather than immediately assembled into VLDL and

secreted [17��]. Several studies have demonstrated that

the measured contribution of DNL-derived free fatty

acids (FFA) to VLDL-triglyceride increases progress-

ively with longer periods of labeled precursor infusion

(þ24 h) that allows for equilibration of newly produced

fatty acids into the liver triglyceride storage pool

[17��,18–20].
Fructose and visceral adiposity
Rutledge and Adeli [7��] suggest that the increased

VLDL production induced by fructose promotes obesity,

although currently there is little experimental evidence

to support this suggestion. In our current study, subjects

consumed their usual ad-libitum diets along with either

fructose-sweetened or glucose-sweetened beverages.

Within 8 weeks, both groups gained an average of

1.5 kg. Intra-abdominal fat measured by computerized

tomography, however, was significantly increased in sub-

jects consuming fructose but unchanged in subjects

consuming glucose (K. Stanhope, P. Havel, unpublished

data). These results suggest that postprandial hypertri-

glyceridemia may specifically promote lipid deposition in

visceral adipose tissue. As recently reviewed by Votruba

and Jensen [21��], fat uptake is higher in abdominal

subcutaneous fat than in subcutaneous fat in the thigh

region [22,23], and higher in omental than in abdominal

subcutaneous fat [24,25] following consumption of high-

fat meals. Whether adipose uptake of meal-derived chy-

lomicron-fatty acids differs from that of VLDL-fatty

acids derived from fructose-induced DNL is unknown,

however. It was recently shown that there was uptake of

both chylomicron-fatty acids and VLDL-fatty acids by

subcutaneous abdominal adipose following a mixed meal;

however, the fractional extraction of chylomicron-

derived fatty acids was greater, especially during the first

2 h after the meal [26��].
Visceral adiposity and portal free fatty acids
concentrations
There is considerable evidence that visceral adiposity is

associated with insulin resistance [27–32]. An important

potential mediator of this association is the direct delivery

of portal blood flow from visceral fat to the liver. Owing to

the portal connection, FFAs released from visceral fat

are more likely to contribute to disturbances in hepatic

metabolism than FFAs released from other adipose

depots [33–35]. Another important mechanism is the

greater lipolytic capacity of visceral than peripheral

adipocytes. Visceral adipocytes have been demonstrated

to be more sensitive than subcutaneous fat cells to the

lipolytic effect of catecholamines [36,37] and, impor-

tantly, less sensitive to the antilipolytic and fatty acid

re-esterifying effects of insulin [38,39]. Furthermore, as

visceral adiposity develops, visceral adipocytes enlarge.

Large adipocytes are more insulin resistant than smaller

adipocytes [40,41�], and therefore less sensitive to the

effects of insulin to suppress lipolysis and promote re-

esterification of fatty acids [42–44]. Visceral adiposity is

also closely associated with reduced circulating levels

of the adipocyte hormone adiponectin, perhaps because

enlarged visceral adipocytes are also likely to produce

less adiponectin. Adiponectin increases hepatic lipid
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oxidation and improves insulin sensitivity by activating

AMP kinase (see review, [45]).
Free fatty acid in the liver and hepatic
triglyceride deposition
With increasing visceral adiposity, there is increased

portal FFA delivery to the liver. It has been demonstrated

that the fraction of FFA delivered to the liver from

visceral fat is positively related to the visceral fat area,

and is approximately 5–10% in normal-weight subjects

and 20–30% in obese subjects [46,47]. Hepatic uptake of

FFA is proportional to the rate of delivery [48–50]. In the

liver, FFA is either oxidized or esterified to form trigly-

ceride. The triglyceride is stored in the cytosol prior to

being incorporated into VLDL and secreted [51]. Recent

studies suggest that triglyceride turnover through the

cytosolic pool and incorporation into VLDL can be rapid

or delayed [17��]. It has been suggested that plasma FFA

entering the liver may be routed through a more rapid

turnover pool than fatty acids from dietary sources or

those produced from DNL [18]. When triglyceride pro-

duction exceeds FFA oxidation and VLDL production

and secretion, triglyceride accumulates in the liver [51].

Triglyceride accumulation in the liver (i.e. non-alcoholic

fatty liver disease—NAFLD) is positively associated

with visceral adiposity [52]. Several studies of patients

with type-2 diabetes and insulin resistance indicate that

liver triglyceride content is also a strong correlate of

hepatic insulin resistance [53–57] and the relationship

is independent of visceral adiposity in both type 2 dia-

betic [56] and nondiabetic subjects [58].
Liver triglyceride content and hepatic insulin
resistance
It has been suggested that hepatic triglyceride accumu-

lation is a major mediator of hepatic insulin resistance

[58,59��]. The Shulman group [60] has provided support

for the hypothesis that lipid accumulation within the liver

induces hepatic insulin resistance with evidence of a

dose–response relationship between hepatic lipid con-

tent and insulin action and by demonstrating that pre-

vention of hepatic fat accumulation abrogates the devel-

opment of hepatic insulin resistance. Morino et al. [59��]

suggest that the mechanism by which intracellular lipid

causes insulin resistance in both liver and muscle is

through diacylglycerol (DAG)-induced activation of nov-

el protein kinase C (nPKC). DAG is a known activator of

nPKC [61] and both DAG and nPKC are associated with

lipid-induced insulin resistance in human muscle [62,63].

Several reports suggest that nPKC activation is associated

with decreased insulin receptor or insulin receptor sub-

strate 1 (IRS1) tyrosine phosphorylation [64–66], and

other reports more specifically implicate nPKC in serine

phosphorylation of insulin receptor, which impairs insulin
signaling [67,68]. Studies conducted in 3T3-L1 adipo-

cytes suggest that inhibitor kappa B kinase and c-JUN

NH2-terminal kinase (JNK1) may mediate the serine

phosphorylation induced by nPKC [69].
Hepatic insulin resistance and lipogenesis
With impaired insulin signaling in the liver, there is

decreased glycogen synthesis, and increased glycogen-

olysis and gluconeogenesis. As a compensatory response,

insulin secretion increases. It has been suggested that

the increased insulin secretion is a direct response to

increased FFA levels rather than increased glucose pro-

duction [70��]. Both fasting glucose and insulin concen-

trations were increased, however, in subjects consuming

fructose within 2 weeks (K. Stanhope, P. Havel, unpub-

lished data). As hyperinsulinemia develops, DNL is

increased due to insulin activation of SREBP1-c [71].

Although the insulin-resistant liver is resistant to the

effects of insulin to stimulate glycogen synthesis and

inhibit gluconeogenesis and glycogenolysis, it does not

appear to develop resistance to insulin’s effect to promote

lipogenesis [72].
Hepatic insulin resistance and VLDL
production
VLDL production is also increased in the insulin-resist-

ant liver due to mechanisms independent of hepatic lipid

supply. With insulin resistance, there is reduced ApoB

degradation and increased VLDL production [73]. The

mechanism by which insulin directly inhibits VLDL

production is unknown [15], but it has been suggested

that insulin promotes ApoB degradation by inhibiting

lipid transfer to VLDL-precursor ApoB [74] and by

regulating a protease enzyme implicated in ApoB degra-

dation [75]. Insulin also inhibits microsomal triglyceride

transfer protein (MTP) expression via an insulin response

element on the MTP gene [76]. MTP is essential for

assembly of triglyceride and ApoB into VLDL and

secretion of VLDL [77]. Lewis et al. [78] suggested that,

in insulin-resistant states, there may be sustained upre-

gulation of MTP expression and protein levels as a result

of resistance to insulin’s inhibitory effect on MTP.
Hypertriglyceridemia and cardiovascular
disease risk
Upregulation of VLDL production leads to increased

plasma triglyceride. Reduced clearance of triglyceride

can also contribute to hypertriglyceridemia [79,80].

Insulin stimulates adipose lipoprotein lipase (LPL) and

LPL activity is decreased in subjects with insulin

resistance [81]. There is growing evidence linking post-

prandial hypertriglyceridemia with proatherogenic

conditions [82��,83,84,85�,86��]. The relationship
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between nonfasting triglyceride and cardiovascular dis-

ease is most likely mediated by effects of postprandial

hypertriglyceridemia to promote lipid remodeling to a

more atherogenic lipid profile consisting of increased

concentrations of triglyceride-rich remnant lipoproteins

and small dense LDL, and decreased concentrations of

HDL [87,88��,89��]. In subjects consuming fructose, we

have reported significantly increased circulating levels of

remnant lipoproteins, small dense LDL, and oxidized

LDL [6].
Peripheral insulin resistance
Elevated triglyceride, along with elevated levels of plasma

FFA released from insulin-resistant adipose tissue, lead to

increased flux of FFA and triglyceride to other tissues. In

skeletal muscle, increased FFA availability can lead to

increased muscle triglyceride content and intramyocellular

lipid (IMCL) deposition. IMCL is closely related to

insulin resistance in skeletal muscle [90–93]. IMCL, or

associated lipid metabolites such as DAG, appear to inhibit

insulin signaling, leading to a reduction in insulin-

stimulated glucose transport [59��,94,95�] and systemic

insulin resistance.
Free fatty acid: link between visceral
adiposity and hepatic insulin resistance
Strong support for the hypothesis that FFA release from

enlarged visceral adipocytes is an important link between

visceral adiposity and hepatic insulin resistance has been

provided by Bergman et al. [96�], who conclude, first, that

FFAs per se are among the most important products of

the visceral adipocyte contributing to insulin resistance

and hence metabolic syndrome; second, that the anatom-

ical position of the visceral adipose depot (i.e. portal

drainage to the liver) plays an important role in the

pathogenesis of metabolic syndrome. When considering

evidence that does not support these conclusions, it is

important to be aware of the following. Bergman et al.
[96�] reported that feeding dogs a 6-week hypercaloric

high-fat diet resulted in a 76% increase in trunk fat, but

fasting FFA concentrations were not affected. Twenty-

four-hour systemic FFA profiles, however, determined

from hourly blood sampling, were increased by 50% [96�].

This suggests that linking increases of FFA with visceral

adiposity and insulin resistance may not be possible in

studies that measure circulating metabolites only in the

fasting state. In human subjects consuming a high-

fructose diet for 10 weeks, we found no change in 24-h

systemic FFA profiles (36 samples collected over 24 h, K.

Stanhope, P. Havel, unpublished data), despite modest

increases in visceral adiposity and insulin resistance. This

does not exclude the possibility that portal concentrations

and hepatic extraction of FFAs were increased in these

subjects. Parallel measurements, however, of arterial and
portal FFA concentrations in conscious dogs under experi-

mental conditions that resulted in a wide range of FFA

release demonstrated that, whereas portal vein FFA levels

tended to be higher than arterial levels (�5–6%), the

values obtained were highly correlated (r2¼ 0.96) [97].

These observations led us to consider the possibility that

hepatic lipid overload, independent of visceral adiposity

and FFA levels, may be an important mediator of insulin

resistance in subjects consuming fructose.
Hepatic lipid overload may initiate liver
triglyceride accumulation and hepatic insulin
resistance independently of visceral adiposity
and free fatty acid
The suggestion that fructose induces insulin resistance

independently of visceral adiposity and FFA levels is

supported by work from the Shulman group [59��,60].

These investigators have built on the work by Kraegen

and colleagues [98], who demonstrated that 3 days of

high-fat feeding results in hepatic insulin resistance prior

to the development of peripheral insulin resistance.

Shulman and colleagues also fed rats a high-fat diet

(69%) for 3 days and reported a three-fold increase in

liver triglyceride content without any significant changes

in visceral fat weight [60]. The hepatic fat accumulation

was associated with impaired IRS tyrosine phosphoryl-

ation, PKC-e (a novel PKC) and JNK1 activation,

decreased insulin stimulation of glycogen synthase and

decreased insulin suppression of gluconeogenesis [60].

It has been proposed that obesity per se is not the main

contributor to insulin resistance, but rather it is the

accumulation of intracellular lipid metabolites (e.g.

DAG) [58,99��]. As presented in Fig. 1, in addition to

FFA, there are other additional sources of triglyceride

that can lead to hepatic lipid accumulation: triglycer-

ide generated by hepatic lipogenesis, and triglyceride

derived from FFA released from VLDL and chylomicron

remnants within hepatic lysosomes [51]. Therefore, by

increasing the delivery of chylomicron remnant-triglycer-

ide to the liver, feeding rats a high-fat diet for only 3 days

resulted in impaired insulin signaling prior to increases in

visceral adiposity [60]. We propose that a high-fructose

diet, which provides substrate for de-novo lipogenesis,

can also produce a lipid overload in the liver that results in

hepatic insulin resistance independently of visceral

adiposity and FFA levels. This suggestion is not mutually

exclusive of the ‘portal’ FFA hypothesis. A sustained,

moderate positive energy balance may indeed promote

hepatic insulin resistance as a result of increased visceral

fat accumulation and increased portal delivery of FFA.

During consumption of a high-fructose diet, however, a

contributing and possibly major mechanism may be a

more direct intra-hepatic lipid oversupply via fructose-

induced lipogenesis.
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Figure 1 A high-fructose diet increases hepatic de-novo lipogenesis and a high-fat diet increases hepatic chylomicron remnant

uptake

Either diet can produce a hepatic lipid overload along with, or independently of, visceral adiposity and increased portal free fatty acid (FFA) delivery.
Visceral adiposity with adipocyte hypertrophy has been hypothesized to reduce adiponectin production and delivery to the liver which would be
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Liver lipid accumulation and insulin
resistance are not always associated
Although there is much support for the hypothesis that

hepatic lipid accumulation initiates insulin resistance,

there is also contradictory evidence. Lonardo et al.
[100��] investigated the association of hepatic steatosis

with insulin resistance in patients with, first, familial

heterozygous hypobetalipoproteinemia (FHBL), second,

NAFLD, third, hepatitis C virus infection (HCV), and

fourth, healthy subjects without steatosis. Data from sub-

jects with NAFLD and HCV supported the association

between liver steatosis and insulin resistance. FHBL

subjects, however, did not have significantly increased

HOMA-IR compared with healthy subjects, and the 17

FHBL subjects with liver steatosis did not have higher

HOMA-IR than the five FHBL subjects without liver

steatosis. Subjects with FHBL have mutations in the ApoB

gene that lead to triglyceride accumulation in the liver due

to impaired VLDL production and secretion. The lack of

insulin resistance in these subjects suggests that the

mechanism by which hepatic triglyceride stores are

increased is key to the development of insulin resistance

[100��]. It also suggests that there may be steps down-

stream of liver triglyceride accumulation, for example

VLDL production or secretion, that are associated with

the induction of insulin resistance. The very low fasting

triglyceride concentrations observed in the subjects with

FHBL (mean¼ 34 mg/dl) are consistent with reduced

rates of VLDL production and secretion. Conversely, it

has been reported that subjects heterozygous for a

mutation that increases ApoB transcription (�516C/T)

exhibited increased postprandial triglyceride concen-

trations [101] and insulin resistance [102�].

Data from other studies also indicate a lack of association

between liver triglyceride and insulin resistance. Patients

with glycogen storage disease type 1 have severe steatosis

without insulin resistance [103,104]. In mice lacking hepa-

tic MTP [105] and in transgenic mice overexpressing acyl-

CoA:diacylglycerol acyltransferase 2 (DGAT2) in the liver

[106�], there were increased liver triglyceride accumu-

lation and reduced circulating triglyceride levels in the

absence of insulin resistance. Rats administered antisense
Figure 1 (Continued )

expected to promote hepatic lipid accumulation. The esterification of hepatic F
(DAG) levels (?); as can the lipolysis, re-esterification, recycling of cytosolic TG
of DAG may lead to activation of nPKC and impaired hepatic insulin signaling/i
and is further upregulated by insulin resistance. Hyperinsulinemia may increase
ApoBdegradation and inhibits MTP(

��
), and both of these processes are likely to

and secretion lead to hypertriglyceridemia. Whether increased VLDL secretion
further investigation (???). Postprandial hypertriglyceridemia increases card
leading to increased circulating concentrations of small dense LDL (sdLDL)
concentrations of HDL. Hypertriglyceridemia and increased levels of circulati
activation and impaired insulin signaling in skeletal muscle. The end result is
pancreatic beta cell compensation, leads to type 2 diabetes.
to stearyl CoA desaturase-1 (SCD1) and fed a lard-supple-

mented diet had increased liver triglyceride, reduced

circulating triglyceride, but normal insulin sensitivity.

Control rats treated with scrambled antisense exhibited

the expected decrease of insulin sensitivity on the lard

diet, yet had only one-third the hepatic triglyceride con-

tent [107�]. The dissociation between hepatic triglyceride

content and insulin resistance noted in these studies again

suggests that mechanisms operating downstream of liver

triglyceride accumulation, which are connected to the

formation or secretion of VLDL, may be involved in the

development of hepatic insulin resistance.
Linking hepatic insulin resistance with VLDL
production
A detailed model for production of VLDL has been

proposed [51,108]. To briefly summarize, the liver trigly-

ceride synthesized from extracelluar and endogenous

sources of FFA does not serve as a direct precursor of

VLDL, but rather is stored in the cytosolic triglyceride

pool. This cytosolic triglyceride is not incorporated into

VLDL en bloc, but rather is first hydrolyzed to FFA,

monoacylglycerol, and DAG. These lipolytic products are

then re-esterified in the vicinity of ApoB-VLDL precur-

sor. Not all of this resynthesized triglyceride is incorp-

orated into VLDL; instead, as much as 50% is recycled

back to the cytosolic pool [51,108]. A possible explanation

for the disconnect between liver triglyceride accumu-

lation and hepatic insulin resistance may be that the DAG

production responsible for the induction of hepatic insu-

lin resistance results from the triglyceride lypolysis, re-

esterification and recycling associated with VLDL assem-

bly, rather than from the DAG associated with the initial

synthesis of triglyceride from extra-hepatic and endogen-

ous sources of FFA. Accordingly, when the assembly of

VLDL is inhibited, as in the examples described above

(FHBL, MTP blockade and administration of SCD1

antisense), the resulting high liver triglyceride content

does not result in DAG/nPKC-induced hepatic insulin

resistance [100��,105,107�].

Possibly contradicting this suggestion is the report that

the transgenic mice overexpressing DGAT2 in the liver,
FA to triglycerides (TG) stored in hepatocytes can increase diacylglycerol
that is associated with VLDL assembly (??). Either or both of these sources
nsulin resistance. VLDL production is regulated by the hepatic lipid supply
DNL because of insulin’s ability to activate SREBP1-c (

�
). Insulin promotes

be downregulated in the insulin-resistant liver. Increased VLDLproduction
and elevated triglyceride levels directly promote visceral adiposity warrants
iovascular disease (CVD) risk by promoting lipid/lipoprotein remodeling
, remnant lipoproteins (RLP), and oxidized LDL (oxLDL) and decreased
ng FFA can promote accumulation of IMCL, DAG production, and nPKC
whole body insulin resistance, which, when accompanied by inadequate
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described above as having increased liver triglyceride

accumulation and normal insulin sensitivity, also had

increased hepatic DAG content [106�]. The increased

DAG accumulation, however, may have resulted from the

upregulation of the initial synthesis of triglyceride, which

increased triglyceride stores, rather than from lipolysis,

re-esterification and recycling associated with VLDL

assembly. The circulating triglyceride concentrations of

the DGAT2 transgenic mice were reduced compared

with the wild-type control mice, which suggests VLDL

assembly was not upregulated by DGAT2 overexpres-

sion [106�]. Another recent study also reported that mice

overexpressing DGAT2, after injection of adenovirus

containing DGAT2 transgene, had increased liver trigly-

ceride, but levels of plasma triglyceride and the hepatic

production rate of VLDL were not affected [109]. It has

been recently reported that hepatic levels of DAG were

increased in patients with NAFLD and nonalcoholic

steatohepatitis compared with control subjects; however,

the authors noted that the impact of the location of DAG

within the hepatocyte requires investigation [110�].
Conclusion
A sustained and moderate positive energy balance is likely

to promote metabolic syndrome by increasing visceral-fat

accumulation, resulting in increased portal delivery of FFA

to the liver. A high-fructose diet may more directly and

rapidly produce a lipid oversupply within the liver via

increased DNL. An oversupply of hepatic lipid results in

liver triglyceride deposition and increased VLDL assem-

bly and secretion. It has been proposed [59��] that the liver

triglyceride accumulation is associated with increased

levels of DAG that activate nPKC and disrupt insulin

signaling. Several recent studies, however, reporting a

disconnect between liver triglyceride accumulation and

insulin resistance [100��,107�] provide support for our

hypothesis that there may be steps downstream of liver

triglyceride accumulation (for example, VLDL production

or secretion) that are associated with the induction of

hepatic insulin resistance.
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