Micronutrients: Phosphorus

Dr. Ritamarie Loscalzo
Medical Disclaimer: The information in this presentation is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Ritamarie Loscalzo, drritamarie.com, and the experts who have contributed. We encourage you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. This presentation is provided for informational purposes only and no guarantees, promises, representations or warranties of any kind regarding specific or general benefits, have been or will be made by Dr. Ritamarie Loscalzo, her affiliates or their officers, principals, representatives, agents or employees. Dr. Ritamarie Loscalzo is not responsible for, and shall have no liability for any success or failure, acts and/or omissions, the appropriateness of the participant’s decisions, or the use of or reliance on this information.
Phosphorus General Info

✓ Essential **macromineral**
✓ 2nd most abundant mineral in the body, after calcium
✓ Makes up about 1% of your body weight
✓ Stored mostly in the bones and teeth – about 85%
✓ **Phosphorus functions:**
 - Bone mineralization
 - Energy production
 - Acid/alkaline homeostasis
 - Manages kidney function and filters waste
✓ First isolated in 1669 in urine during alchemy trials
✓ The name is derived from the Greek “Phos” (light) and “Phoros” (bearer), meaning “bringer of light”
✓ Phosphoric acid in soda drinks can lead to bone issues
Chemistry of Phosphorus

✓ 15th element in the periodic table – symbol P
✓ A vital part of all living things
✓ A non-metal; part of the nitrogen family
✓ As a gas, it’s colorless
✓ As a solid, it’s silvery white or red, depending on how it is bonded
✓ Burns when exposed to air, so is stored under water
✓ At least 3 allotropic forms:
 ➢ White (yellow)
 ➢ Black
 ➢ Red
Phosphorus in Living Organisms

✓ Component of adenosine triphosphate (ATP)
✓ Phosphorylation *activates enzymes, hormones, and cell-signaling molecules*
✓ Human bones are made up of mostly calcium *phosphate* \(\text{Ca}_3(\text{PO}_4)_2 \)
✓ Binds to hemoglobin in red blood cells and *regulates oxygen delivery* to the tissues of the body
Phosphorus Functions

✓ Major **structural component of bone** in the form of a calcium phosphate salt called hydroxyapatite
✓ Phospholipids (e.g., phosphatidylcholine) are major structural components of **cell membranes**
✓ **Energy production and storage** depends on phosphorylated compounds, such as adenosine triphosphate (ATP) and creatine phosphate
✓ **DNA and RNA** are long chains of phosphate-containing molecules
✓ Helps maintain body’s **acid-base balance (pH)** by acting as an important buffer
Phosphorus Digestion

✓ Most absorbed in organic form
 ➢ Hydrolyzed enzymatically in small intestine lumen
 ➢ Released as inorganic phosphate

✓ Phospholipase C
 ➢ Zinc-dependent enzyme
 ➢ Hydrolyzes the glycerophosphate bond in phospholipids

✓ Alkaline phosphatase
 ➢ Zinc-dependent enzyme
 ➢ Activity is stimulated by calcitriol
 ➢ Functions at the brush border of the enterocyte to free phosphorus from some bound forms
 ➢ It cannot free phytate-bound phosphorus
Phosphorus Absorption

Phosphorus is readily absorbed in the small intestine

Phosphate intake from food 32 mmol

Fecal excretion 11 mmol

Net intestinal absorption 21 mmol

Formation 8 mmol

Reabsorption 8 mmol

Extracellular fluid phosphorus 22 mmol

208 mmol 187 mmol

Phosphorus excreted in urine 21 mmol

Source: Nat Rev Neph © 2010 Nature Publishing
Phosphorus Absorption

✓ About 50% - 70% of dietary phosphorus absorbed
 ➢ Animal sources at the upper end of the range
 ➢ Phytate-containing foods at the lower end

✓ Primarily in duodenum and jejunum

✓ In its inorganic form throughout small intestine

✓ Occurs by two processes:
 ➢ A saturable, carrier-mediated active transport system dependent on sodium and enhanced by calcitriol
 ➢ Concentration-dependent passive diffusion process
Influences on Phosphorus Absorption

Decreases
- Leaky gut and other GI issues
- Excessive magnesium, calcium, and aluminum
- Phytates in wheat bran & dried beans
 - Absence of phytase in digestion
 - Phytase – phosphate esterase – frees phosphate from phytic acid
- Iron
- Smoking
- Alcohol

Increases
- Vitamin D3
 - Stimulates absorption in the duodenum and jejunum
- Vitamin K
- Vitamin C
- Vitamin E
- Boron
Phosphorus Transport

✓ Quickly absorbed from intestine into blood
✓ Appears in blood within about an hour after ingestion
✓ Found in blood in both organic and inorganic forms

- 70% - organic phosphate: phospholipids in lipoproteins
- 30% as HPO$_4^{2-}$ and H$_2$PO$_4^-$ and trace amounts PO$_4^{3-}$

Inorganic phosphates associated with:
 - Calcium
 - Magnesium
 - Sodium
Phosphorus Storage

- Found in all cells of the body; majority in:
 - Bone
 - Muscle

- Circulating phosphate is in equilibrium with skeletal and cellular inorganic phosphate

- Inorganic phosphorus
 - Ultrafilterable phosphate
 - Plasma ranges: 2.5 – 4.5 mg/dL

- Organic phosphates formed in intermediary metabolism

- Variability of serum phosphate concentration as a result of:
 - Dietary phosphate
 - Age and stage growth
 - Time of day
 - Various hormones
 - Renal function
Phosphorus Excretion

✓ Excess excreted by kidneys, regulated by hormones:
 ➢ Parathyroid hormone (PTH)
 ➢ Vitamin D
 ➢ Fibroblast growth factor-23 (FGF-23)

✓ Slight drop in blood calcium levels sensed by parathyroids
 ➢ → Increased secretion of PTH
 ➢ → ↓ Urinary excretion of calcium
 and ↑ urinary excretion of phosphorus
 ➢ → Stimulates bone resorption
Regulation of Phosphorus: 1

✓ Concentrations are tightly controlled
 ✓ Intracellularly
 ✓ Extracellularly

✓ Blood levels maintained between 3.0 and 4.5 mg/dL

✓ Blood levels not indicative of optimal levels in bone
Regulation of Phosphorus: 2

Diagram:

- **Ca**
 - + PO4
 - + Vitamin D
 - + Ca and PO4 absorption

PTH
- + FGF-23
- PTH effect:
 1. Ca reabsorption
 2. PO4 reabsorption
 3. 1,25 Vit. D

FGF-23 effect:
1. PO4 reabsorption
2. 1,25 Vit. D

Increase serum calcium
Decrease serum phosphorus

Source: J Am Board Fam Med © 2009 American Board of Family Medicine
Phosphorus Drug Interactions

- **Aluminum-containing antacids** form aluminum phosphate, which is not absorbable
- **Proton pump inhibitors** may also limit the efficacy of phosphate-binder therapy in patients with kidney failure
- **Excessively high doses of 1,25-dihydroxyvitamin D** or its analogs, may result in hyperphosphatemia
- **Potassium supplements or potassium-sparing diuretics** taken with phosphorus supplements may result in high blood levels of potassium (hyperkalemia), resulting in life-threatening heart rhythm abnormalities
- **HRT in postmenopausal women** is associated with higher urinary phosphorus excretion and lower serum phosphorus levels in treated compared to untreated women
Phosphorus Deficiency

✓ Inadequate phosphorus intake rarely results in abnormally low serum phosphorus levels (hypophosphatemia) because renal reabsorption of phosphorus increases to compensate for decreased intake

✓ Found in cases of near-starvation

✓ Inherited disorders, such as Renal Phosphorus Wasting disease, can lead to deficiency

✓ **Deficiency symptoms include:**
 • Loss of appetite
 • Muscle weakness
 • Bone fragility
 • Numbness in the extremities
Bone Mineralization

✓ **85% of body phosphorus found in bone**

➢ Of prime importance in development of skeletal tissue

➢ **Found in amorphous calcium phosphate forms**

 • $\text{Ca}_3(\text{PO}_4)_2$
 • $\text{CaHPO}_4 \cdot 2\text{H}_2\text{O}$
 • $\text{Ca}_3(\text{PO}_4)_2 \cdot 3\text{H}_2\text{O}$,
 • Hydroxyapatite: $\text{Ca}_{10}(\text{PO}_4)_6 (\text{OH})_2$
 – crystalline form laid down on collagen in ossification of bone formation

✓ **Ratio of calcium to phosphorus**

➢ 13:1

➢ Similar to extracellular fluid

➢ Crystalline bone – 1.5:1
Bone Metabolism Influenced by

✓ Parathyroid hormone (PTH)
 ➢ Stimulates resorption of phosphate from bone, same as calcium
 ➢ Stimulates excretion of phosphorus in urine
 ➢ PTH-induced urinary excretion of phosphorus
 • Sufficient to override bone resorption of phosphorus
 • Effects a net decrease in plasma phosphate

✓ Calcitriol
 ➢ In conjunction with PTH enhances phosphate resorption from bone
 ➢ Stimulates phosphate absorption in the intestine
 • Through enhanced alkaline phosphatase activity

✓ Calcitonin
 ➢ Promotes bone mineralization

✓ Phosphorus that is not part of the bone
 ➢ Found either in extracellular fluids such as blood or soft tissue
 ➢ Within cells, major anion involved with other processes
Nucleotide/Nucleoside Phosphates

✓ Important component of nucleic acids DNA and RNA
✓ Alternates with pentose sugars to form the linear backbone
✓ Intermediary metabolism of energy nutrients in the form of high-energy phosphate bonds
 ➢ Nucleotide adenosine triphosphate (ATP)
 ➢ Creatine phosphate (phosphocreatine) - synthesized in muscle from ATP and creatine
 ➢ Can provide energy to muscles as needed (e.g., exercise)
 • Transferring its PO₄ to ADP via creatine kinase
✓ Uridine triphosphate (UTP)
 ➢ Activate substances in intermediary metabolism
 ➢ Hydrolysis provides for the coupling of uridine monophosphate and glucose 1-phosphate to form uridine diphosphate (UDP)-glucose
 ➢ UDP-glucose is critical for the synthesis of glycogen
Phosphorus Intracellular Second Messenger

✓ Functions as second messenger to affect cellular metabolism

✓ Part of cyclic adenosine monophosphate (cAMP)
 ➢ Acts within cells by activating certain protein kinases
 ➢ Generated in response to the binding of certain hormones to cell receptors
 ➢ Derived from ATP

✓ Inositol triphosphate (IP$_3$)
 ➢ Second messenger to trigger intracellular calcium release
 ➢ Actions mediated by protein kinases
Phosphoproteins

- Intermediary metabolism of the energy nutrients through the phosphorylation of different substrates in the body
- **Protein kinases activated by cAMP**
 - Function to phosphorylate specific target proteins within the cell
 - Changes cellular activities
Phospholipid Structural Roles

- Cell membranes contain phospholipids
- Important to the bilayer structure of cell membranes → Polar and nonpolar regions
- Examples:
 - Phosphatidylcholine
 - Phosphatidylinositol
 - Phosphatidylserine
Acid-Base Balance

✓ Phosphate functions in acid-base balance
✓ Main intracellular buffer within cells
✓ Filtered phosphate reacts with secreted hydrogen ions in kidneys
 ➢ Releases sodium ions
 ➢ Removes free hydrogen ions
 ➢ Increases pH
✓ Actions can be reversed to lower pH
Assessing Phosphorus Status

✓ Serum phosphorus is generally part of routine blood chemistry

- Serum phosphorus is a poor reflection of body stores because <1% is in extra cellular fluid
- Hypophosphatemia (< 3.0 mg/dl)
- Hyperphosphatemia (>4.5 mg/dl)
- Vitamin D3
- Protein status
- Parathyroid hormone (PTH)
- PTH-related peptide (PTHrP)
- Renal function labs (GFR<20-25 mL/min)

***Serum indicates little about phosphorus status

✓ Functional Tests:
 - SpectraCell
 - NutrEval by Genova / Metametrix
 - NTX or Osteonex – for bone turnover

✓ Questionnaires and good history taking for signs and symptoms

No routine biochemical method appears to assess phosphorus status accurately
Table 1. Recommended Dietary Allowance (RDA) for Phosphorus

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Age</th>
<th>Males (mg/day)</th>
<th>Females (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>0-6 months</td>
<td>100 (AI)</td>
<td>100 (AI)</td>
</tr>
<tr>
<td>Infants</td>
<td>7-12 months</td>
<td>275 (AI)</td>
<td>275 (AI)</td>
</tr>
<tr>
<td>Children</td>
<td>1-3 years</td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td>Children</td>
<td>4-8 years</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Children</td>
<td>9-13 years</td>
<td>1,250</td>
<td>1,250</td>
</tr>
<tr>
<td>Adolescents</td>
<td>14-18 years</td>
<td>1,250</td>
<td>1,250</td>
</tr>
<tr>
<td>Adults</td>
<td>19 years and older</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>18 years and younger</td>
<td>-</td>
<td>1,250</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>19 years and older</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>18 years and younger</td>
<td>-</td>
<td>1,250</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>19 years and older</td>
<td>-</td>
<td>700</td>
</tr>
</tbody>
</table>
Hyperphosphatemia

Tolerable Upper Intake Level (UL) for Phosphorus

<table>
<thead>
<tr>
<th>Age Group</th>
<th>UL (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants 0-12 months</td>
<td>Not possible to establish*</td>
</tr>
<tr>
<td>Children 1-3 years</td>
<td>3,000 (3.0 g)</td>
</tr>
<tr>
<td>Children 4-8 years</td>
<td>3,000 (3.0 g)</td>
</tr>
<tr>
<td>Children 9-13 years</td>
<td>4,000 (4.0 g)</td>
</tr>
<tr>
<td>Adolescents 14-18 years</td>
<td>4,000 (4.0 g)</td>
</tr>
<tr>
<td>Adults 19-70 years</td>
<td>4,000 (4.0 g)</td>
</tr>
<tr>
<td>Adults 71 years and older</td>
<td>3,000 (3.0 g)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>3,500 (3.5 g)</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>4,000 (4.0 g)</td>
</tr>
</tbody>
</table>

*Source of intake should be from food and formula only.
Hyperphosphatemia Risk

✓ Kidney disease or stones
✓ Low PTH
✓ Kidney trauma/injury
✓ Transplant recipients
✓ Dialysis
✓ Consumption of excessive soft drinks or highly processed foods
✓ Excessive use of enemas or laxatives containing phosphates
Hyperphosphatemia Symptoms

✓ Hyperphosphatemia typically asymptomatic
✓ If acute, symptoms result from hypocalcemia:
 ➢ Joint pain
 ➢ Muscle cramps and spasms
 ➢ Fatigue
 ➢ Perioral numbness
 ➢ Bone pain
 ➢ Pruritus
 ➢ Nausea
 ➢ Vomiting
 ➢ Rash
Excessive Phosphate Intake: Adverse Effects on Health
Assessing Bone Mineral Density

Test for those especially at risk for osteoporosis

✓ DEXA aka DXA
 - Dual-energy X-ray absorptiometry is one of the best tools
 - Scan specific sites at two different energy levels

✓ CT scans:
 - Less precise and accurate than DEXA
Dietary Sources of Phosphorus

<table>
<thead>
<tr>
<th>Plant</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Cashews</td>
<td>✓ Chicken</td>
</tr>
<tr>
<td>✓ Sunflower Seeds</td>
<td>✓ Turkey</td>
</tr>
<tr>
<td>✓ Lentils</td>
<td>✓ Beef</td>
</tr>
<tr>
<td>✓ Almonds</td>
<td>✓ Halibut</td>
</tr>
<tr>
<td></td>
<td>✓ Sardines</td>
</tr>
<tr>
<td></td>
<td>✓ Salmon</td>
</tr>
<tr>
<td></td>
<td>✓ Tuna</td>
</tr>
<tr>
<td></td>
<td>✓ Dairy</td>
</tr>
</tbody>
</table>
Herbs High In Phosphorus

✓ Poppy seed
✓ Mustard seed
✓ Caraway
✓ Celery seed
✓ Dill weed
✓ Cumin
✓ Coriander
✓ Fennel seed
✓ Chervil
✓ Anise
✓ Parsley
✓ Onion powder
✓ Paprika
✓ Curry
✓ Chili powder
✓ Fenugreek
✓ Marjoram
✓ Tarragon
✓ Spearmint
✓ Basil
✓ Turmeric
✓ Nutmeg
✓ Saffron
✓ Thyme
✓ Cardamom
✓ White pepper
✓ Ginger
Food Sources of Phosphorus

Phosphorus content by food group (organic sources)

<table>
<thead>
<tr>
<th>Food Group</th>
<th>P (mg)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains (1 oz.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Refined</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Vegetables (1/2 cup)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark-green</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Red & orange</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Beans & peas</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Starchy</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Fruit and juices (1/2 cup)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Milk (1 cup)</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Meat & beans (1 oz.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Oils (1 tsp.)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Discretionary calories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added sugars</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Solid fats</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Whole grains > refined grains
 - Phytates reduce absorption
- Protein-rich foods have phosphorus

Forms of Phosphorus Supplementation

✓ **Elemental phosphorus:** Highly toxic; only used as a homeopathic treatment

✓ **Inorganic phosphates:** Not toxic at typical doses:
 - Dibasic potassium phosphate
 - Monobasic potassium phosphate
 - Dibasic sodium phosphate
 - Monobasic sodium phosphate
 - Tribasic sodium phosphate
 - Phosphatidylcholine
 - Phosphatidylserine
Topical Phosphorus

✓ Phosphate is the drug (salt) form of phosphorus – combines w/other compounds
 ➢ E.g: Clindamycin phosphate topical - used to treat acne by decreasing the number of acne lesions. Clindamycin is an antibiotic; phosphates allow penetration.

✓ Phosphates in enemas as laxatives

✓ Athletes use phosphate supplements before competitions or heavy workouts to help reduce muscle pain and fatigue
Phosphorus/Calcium Ratio

Optimal Intake:

- Ratio of serum calcium to phosphorus 10:4
- A high ratio of phosphorus to calcium sensitizes the body and increases inflammatory tendencies

- Phosphorus level too high:
 - Frequent colds and flu
 - Sensitive skin
 - Caries near gum line
 - Red-rimmed eyes
 - Low blood pressure
 - Sensitive to pain and noise
Resources

✓ Advanced Nutrition and Human Metabolism – Gropper, Smith and Groff

✓ Better Bones Blog – Dr. Susan A. Brown, PhD
http://www.drritamarie.com/go/BetterBones

✓ Dr. Edward Group DC, NP, DACBN, DCBCN, DABFM
http://www.drritamarie.com/go/PhosphorusFoods

✓ Last, Walter, DC; The Calcium/Phosphorus Ratio
http://www.drritamarie.com/go/CalciumPhosphorusRatio

✓ Linus Pauling Institute:
http://www.drritamarie.com/go/LPIPhosphorus

✓ University of Maryland Medical Center:
http://www.drritamarie.com/go/UofMarylandPhosphorus