McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 317

NUMERICAL ANALYSIS

Examiner: Professor A. Humphries

Date: Wednesday December 14, 2005

Associate Examiner: Professor T. Wihler

Time: 9:00AM - 12:00PM

INSTRUCTIONS

- 1. Please answer all questions in the exam booklets provided.
- 2. All questions carry equal weight.
- 3. Credit will be given for $\underline{\mathbf{6}}$ best answers
- 4. This is a closed book exam.
- 5. Notes are not permitted.
- 6. Non-Programmable calculators are permitted.
- 7. This exam comprises the cover page, and 3 pages of 8 questions.

8. EXAM is PRINTED DOUBLE- 5,000

- 1. (a) State the "Fixed Point Theorem," which gives sufficient conditions for an iteration $x_{n+1} = g(x_n)$ to converge to a fixed point.
 - (b) Find an interval and a starting point x_0 on which the iterative scheme to find $\sqrt{2}$;

$$x_{n+1} = x_n - \frac{1}{3}(x_n^2 - 2),$$

satisfies the conditions of the theorem. What is the rate of convergence of the iterative scheme?

(c) Aitken's Δ^2 method to speed up convergence of a sequence $\{x_n\}$ can be written as

$$\hat{x}_n = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}.$$

Find the iterates of *Steffensen's method* for the problem in (b), up to and including the second application of Aitken's Δ^2 formula, using a suitable starting point.

2. (a) Let f(x) be n+1 times continuously differentiable on [a,b] and x_0, x_1, \ldots, x_n be distinct interpolation points in [a,b]. Define the fundamental Lagrange polynomials $l_0(x), l_1(x), \ldots, l_n(x)$ for the interpolation points and show that

$$p_n(x) = \sum_{j=0}^{n} f(x_j) l_j(x)$$

interpolates f at x_0, x_1, \ldots, x_n .

- (b) Show that $p_n(x)$ is the unique interpolating polynomial of degree n.
- (c) Suppose that n=3

$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $f(x_0) = 0$, $f(x_1) = 0$, $f(x_2) = 4$, $f(x_3) = 6$.

Find $p_3(x)$ and evaluate $p_3(2.5)$. Find a bound for the error in this approximation of f(2.5), when $\max_{x \in [0,3]} |f^{(4)}(x)| \leq 10$, using the error formula

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

- 3. (a) What is the key difference between Lagrange and Hermite interpolants? What is the difference between a clamped and a natural cubic spline?
 - (b) A natural cubic spline S on [0, 2] has the formula

$$S(x) = \begin{cases} S_0(x) &= 1 + 2x - x^3, & \text{if } 0 \le x < 1 \\ S_1(x) &= a + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{if } 1 \le x \le 2. \end{cases}$$

Find a, b, c, d.

(c) A cubic Bezier curve $\mathbf{B}(t)$ has end points $\mathbf{b}_0 = (0,0)$ and $\mathbf{b}_3 = (1,0)$ and guide points $\mathbf{b}_1 = (0,1/2)$ and $\mathbf{b}_2 = (1,1/2)$. What is the role of the guide points and what properties does the curve have with respect to the four given vectors? State the formula of the curve $\mathbf{B}(t)$.

- 4. (a) Using the formula for roots of a quadratic equation and 3-digit decimal chopping compute approximations to the roots of $x^2 1000x 1 = 0$. Organise your calculations so as to minimise the effect of the errors.
 - (b) Consider the centered-difference expression for approximating $f''(x_0)$:

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} - \frac{h^2}{12}f^{(4)}(\xi), \qquad x_0 - h < \xi < x_0 + h.$$

Suppose $|f^{(4)}(x)| \leq M$ for all $x \in [x_0 - h, x_0 + h]$, and that h > 0. If we encounter roundoff errors δ_1, δ_2 in computing $f(x_0 + h), f(x_0 - h)$ respectively, and $|\delta_1|, |\delta_2| < \delta$, find an upper bound on the total error in the approximation. Determine the value of h which minimises this bound when M = 150 and $\delta = 10^{-10}$, and state the bound.

5. (a) Define the degree of accuracy (also known as the degree of precision) of a quadrature formula $I_h(f)$ for approximating the integral

$$I(f) = \int_{a}^{b} f(x)dx.$$

(b) Find constants α , β and γ such that the degree of accuracy of the quadrature formula

$$I_h(f) = h[\alpha f(a) + \beta f(a + \gamma h)]$$

is as large as possible, where h = (b - a).

- (c) What is the degree of accuracy p of the method in (b)? Given that $I(f) = I_h(f) + kh^{p+2}f^{(p+1)}(\xi)$, find k.
- 6. (a) Let $I_h(f)$ be the Composite Trapezoidal Rule approximation to

$$I(f) = \int_0^1 e^{x^2} dx.$$

Evaluate $I_h(f)$ when h = 0.5 and when h = 0.25.

(b) Derive the error bound

$$I(f) - I_h(f) = -\frac{(b-a)}{12}h^2f''(\xi)$$

for some $\xi \in [a, b]$, for the Composite Trapezoidal rule, from the error bound for the Trapezoidal rule.

- (c) Use the error bound in (b) to obtain upper bounds on the errors for the approximations in (a).
- (d) Apply one-step of Richardson extrapolation to the approximations in (a), to find a better approximation to I(f).

7. Consider the initial value problem

$$y' = f(y),$$
 $0 \leqslant t \leqslant T,$ $y(0) = \alpha.$

Suppose you approximate the solution y(t) using the Runge-Kutta method

$$w_0 = \alpha,$$

 $w_{i+1} = w_i + hf(w_i + \frac{h}{2}f(w_i)), \quad i = 0,...N$

with time-step h > 0.

- (a) Define the local truncation error $\tau_{i+1}(h)$ and use it to determine the order of this method.
- (b) Consider the case where

$$f(y) = \lambda y, \quad \lambda < 0,$$

and

- i. show that $w_{i+1} = (1 + h\lambda + \frac{(h\lambda)^2}{2})w_i$.
- ii. Under what conditions on h does $\lim_{i\to\infty}w_i=0$?
- 8. (a) State sufficient conditions on p(t), q(t), r(t), to ensure that the boundary value problem

$$y'' = p(t)y' + q(t)y + r(t),$$
 $a \leqslant t \leqslant b,$ $y(a) = \alpha,$ $y(b) = \beta,$

has a unique solution.

(b) Use the linear shooting method to approximate the solution y(0.5) of the boundary value problem

$$y'' = -2y' + ty + 3,$$
 $1 \le t \le 2,$ $y(1) = 1,$ $y(2) = 2,$

using $h = \frac{1}{2}$, and the (Forward) Euler method.