Midterm 1, September 30, 2009: 6:30-8:30 pm	
Student Name	Room Assignment
A-Byington	Stewart Biology S1/4
Byland-Coates McCall	Otto Maass 10
Cochin-Egan	Stewart Biology N2/2
El Abbas-Inoue	F.D.A. Auditorium
Isbester-Muddiman	Leacock 132
Mulherin-Panagiotou	Otto Maass 217
Panaite-Rozenberg	Leacock 26
Rudd-Stephenson	Rutherford Physics 112
Stetson-Z	Otto Maass 112

Midterm I, CHEM 110, Septmber 30, 6:30-8:30 pm

If there is a topic in the text that was not covered in class, it will not be on the exam. Also, please note that you are also not responsible for the "side stories". Do, however, make sure to memorize the important equations that were posted earlier in the Selected Slides section on webCT.

The midterm consists of 40 multiple-choice questions, which will be machine-scored. Bring a scientific calculator (with its memory, if any, cleared; you will need to prove this to the invigilator), pencils for the computer card and, most importantly, your McGill ID card with your student number.

Answers to Chapter 8 Problems and Other Study Points
Scanned answers to the problems in Chapter
8 and those for problems 9-36 in Chapter 9
have now been posted.

Exercises \#24-30 in Chapter 9

These exercises involve calculations of ionization energies. You are welcome to do these, but there will be no ionization calculations on the midterm.

Which of the following particles has the longest
wavelength associated with it?

1. An electron (mass $9.109 \times 10^{-31} \mathrm{~kg}$) moving at one-fifth the speed of light
2. A proton (mass $1.673 \times 10^{-27} \mathrm{~kg}$) moving at one-fifth the speed of light
3. An electron (mass $9.109 \times 10^{-31} \mathrm{~kg}$) moving at one-tenth the speed of light
4. A proton (mass $1.673 \times 10^{-27} \mathrm{~kg}$) moving at one-tenth the speed of light

Answer

This question depends on the de Broglie relationship: $\lambda=\mathrm{h} / \mathrm{mu}$

1. $\lambda_{1}=5 \mathrm{~h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}$
2. $\lambda_{2}=5 \mathrm{~h} / \mathrm{m}_{\mathrm{p}} \mathrm{c}$
3. $\lambda_{3}=10 \mathrm{~h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}>$ Ans. $1\left(5 \mathrm{~h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right)$
4. $\lambda_{4}=10 \mathrm{~h} / \mathrm{m}_{\mathrm{p}} \mathrm{c}>$ Ans. $2\left(5 \mathrm{~h} / \mathrm{m}_{\mathrm{p}} \mathrm{c}\right)$
$m_{e}\left(9.109 \times 10^{-31} \mathrm{~kg}\right) \ll m_{p}\left(1.673 \times 10^{-27} \mathrm{~kg}\right)$
Therefore, $\lambda_{3}>\lambda_{4}$ Ans. 3 is correct.

5. (a) Line A is for the tanasition $n=5 \rightarrow n=2$, while Live B is for the transition $n=6 \rightarrow n=2$
(b) This transition corresponds to the $n=5$ to $n=2$ tansition. Hence, $\Delta E=$ hch $\Delta E=\left(6.626 \times 10^{0.34} \mathrm{Js}\right) \times\left(2.998 \times 10^{8} \mathrm{~ms}\right) \cdot\left(27.1 \times 10^{-9} \mathrm{~m}\right)=7.33 \times 10^{-18} \mathrm{~J}$ $\Delta E=z^{2} \mathrm{R}_{\mathrm{m}} \mathrm{m}^{2}-z^{2} \mathrm{R} / \mathrm{m}^{2}$ $4.577 \times 10^{-19} \mathrm{~J}=-Z^{2}\left(2.179 \times 10^{-18}\right) /(5)^{2}+Z^{2}\left(2.179 \times 10^{-18}\right) /(2)^{2}$
$Z^{2}=16.02$ and $Z=4.00$ Thus, this is the spectrum for the $\mathrm{Be}{ }^{3+}$ adion.
6. (a) Line A is for the tansition $n=4 \rightarrow n=1$, while Eine B is for the transition $n=5 \rightarrow n=1$
(b) This transition corresponds to then $=4$ ton $=1$ transition. Hence, $\Delta E=h</ \lambda$ $\Delta E=\left(6.626 \times 10^{34} \mathrm{~J}\right) \times\left(2998 \times 10^{8} \mathrm{~m} \mathrm{~m}^{-1}\right)+\left(10.8 \times 10^{-7} \mathrm{~m}\right)=1.84 \times 10^{-17} \mathrm{~J}$
$\Delta E=z^{2} \mathrm{RH}_{\mathrm{H}} \mathrm{m}^{2} \cdots Z^{2} \mathrm{R} \cdot \mathrm{H} / \mathrm{m}_{2}^{2}$
$4.577 \times 10^{.19} \mathrm{~J}=z^{2}\left(2.179 \times 10^{-18}\right) /(1)^{2}+z^{2}\left(2.179 \times 10^{-18}\right) /(2)^{2}$
$\mathrm{Z}^{2}=9.004$ and $Z=3.00$ Thus, hisis is the spectrum for the L^{2+} cation.

Old Midterm-1, Fall 2005 \#24, Version 1	
A. $n=2, Z=4: r_{n}=\left(2^{2}\right) a_{0} / 4=a_{0}$	Be^{3+}
B. $n=1, Z=1: r_{n}=\left(1^{2}\right) a_{0} / 1=a_{0}$	H
C. $n=3, Z=3: r_{n}=\left(3^{2}\right) / 3=3 a_{0}$	Li $^{2^{+}}$
D. $n=4, Z=2: r_{n}=\left(4^{2}\right) / 2=8 a_{0}$	He^{+}
E. $n=3, Z=1: r_{n}=\left(3^{2}\right) / 1=9 a_{0}$	H
Answer E is correct.	

Key Study Points for Chapter 8

1. Force of Coulombic attraction is directly proportional to the electrostatic charges (q_{1} and q_{2}) and inversely proportional to the square of the separation between the charges (r^{2}).
2. Definition of isotope.
3. Definition of atomic number.
4. Definition of mass number.
5. General formula for an element or ion.
6. Orders of decreasing energy, frequency and wavelength for the different types of electromagnetic radiation.
7. Intensity of a wave is directly proportional to the square of the amplitude.
8. S.I. unit of frequency $\left(\mathrm{Hz}, \mathrm{s}^{-1}\right)$.
9. Meaning of S.I. prefixes: pico, femto, nano, etc.

Key Study Points (2)

16. Blackbody radiation \rightarrow absorbs and emits all radiation regardless of v. Continuous spectrum, dependent on temperature. Best example \rightarrow light emitted from a hot metal.
17. Rayleigh-Jeans theory predicted that the energy density for a blackbody would be infinite at low λ and that it was inversely proportional to λ^{4} and directly proportional to absolute temperature T.
18. Einstein, photoelectric effect:: $K E_{e}=1 / 2 m_{e} u^{2}=h(v-$ v_{0}), where v_{0} is the threshold frequency and $h v_{0}=\Phi$ (work function).
19. $E=h v$, energy associated with a photon (G.N. Lewis).
20. Bohr theory: electron energy in stationary states is constant

Key Study Points (4)

21. Bohr assumed that the orbital angular momentum is quantized: $\mathrm{nh} / 2 \pi$.
22. Bohr's radius equation: $r_{n}=n^{2} a_{0}$, where $a_{0}=$ Bohr radius (52.9 pm).
23. Bohr's energy equation:
$E_{n}=-\left(h c R_{H}\right) / n^{2}=-2.179 \times 10^{-18} \mathrm{~J} / \mathrm{n}^{2}$.
24. $\mathrm{n}=1$ (ground state).
25. $n=2,3,4, \ldots$ (excited states).
26. Energy difference between orbits in Bohr's theory:
$\Delta E=E_{\text {final }}-E_{\text {initial }}=h c R_{H}\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right)$
$=2.179 \times 10^{-18} \mathrm{hcR}_{\mathrm{H}}\left(1 / \mathrm{n}_{\mathrm{i}}^{2}-1 / \mathrm{n}_{\mathrm{f}}^{2}\right) \mathrm{J}$
$=h c / \lambda$
27. Emission: electron in excited state drops down to a lower energy state.

Key Study Points (5)

28. Absorption: electron is a lower energy state is excited to a higher energy one.
29. Two-photon transition: If the energy for a single photon transition is $\Delta \mathrm{E}$, then the total energy for a two-photon transition must equal $\Delta \mathrm{E}$.
30. For Lyman line spectra in UV: $n_{f}=1$
31. For Balmer line spectra in visible: $n_{f}=2$
32. For Paschen line spectra in IR: $n_{f}=3$
33. Ionization energy is $\Delta \mathrm{E}$ beween $\mathrm{n}=1$ and $\mathrm{n}=$ infinity states.
34. Bohr model applies to all H -like (one electron) systems, e.g., $\mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}, \mathrm{B}^{4+}, \mathrm{C}^{5+}$. etc. Remember Z is involved.

Key Study Points (6)

Key Study Points (7)

38. For H and H -like species, the orbitals for a given n value are degenerate.
39. de Broglie: $\lambda=h / m c$ for a photon and
$\lambda=\mathrm{h} / \mathrm{mu}$ for matter (electron, neutron, etc.) where $\mathrm{u}=$ velocity of the matter.
40. Wave properties of matter confirmed \rightarrow electron diffraction work of Davisson-Germer and Thomson. (U.K.).
41. Heisenberg uncertainty principle: $\Delta x \cdot \Delta p \geq h / 4 \pi$.
42. At the atomic level, the act of measurement changes the system.
43. Wavefunction squared $\left(\Psi^{2}\right)=$ electron probability
44. Quantum numbers ($\mathrm{n}, \mathrm{I}, \mathrm{m}_{1}$ and m_{s})
45. s, p, d, f orbitals ($I=0,1,2,3$, respectively).
$\mathrm{m}_{\mathrm{s}}=+1 / 2$ or $-1 / 2$.
. Stern-Gerlach experiment with Ag atoms.
46. Degenerate $=$ orbitals of the same energy.

Key Study Points (8)

Key Study Points for Chapter 9

Distinction between metals and nonmetals.

45. Aubau process for electron configurations.
46. Four rules: (1) minimum energy configuration; (2) Pauli exclusion principle; (3) Hund's rule; and (4) once orbitals of same energy are filled singly, additional electrons can be added with opposite spin.
47. Know the class exceptions to the Aufbau process: Cr, Cu.
48. Know the shapes and labelling of the s, p and d orbirtals

Metals tend to lose electrons, while nonmetals tend to gain electrons.
The elements in Groups 1, 2, 13, 14, 15, 16 and 17 with ns ${ }^{x} n^{y}$ valence electrons want to achieve the nearest noble gas electronic configuration in order to be more stable.
4. Some transition metals lose electrons to achieve noble gas electronic configurations. Many transition metals do not.

Extra stability of half-filled d shells (3d, 4d, 5d)
How to calculate atomic and ionic radii.
Comparison of atomic and ionic sizes.
Isoelectronic species and comparison of their atomic and ionic radii.
Periodic and group trends in atomic and ionic radii.
Periodic and group trends in ionization energy.
Periodic and group trends in electron affinity.

$\Delta E<0$ Emission: Photon of Light Created

Emission...Higher Potential E orbit to Lower Potential E orbit The energy is emitted as a photon that matches the absolute value of the energy difference between orbits

SI Units			
* Secondary Units written in terms of Primary			
TABLE 1.1 - Common SI Secondary Quantities and their Units			
Secondary Quantity	Abbreviation	Unit	Equivalent in Other Units
Charge	q	Coulomb (C)	A. s
Energy	$E ; U ; K$	Joule (J)	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
Frequency	v	Hertz (Hz)	s^{-1}
Force	F	Newton (N)	$\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$
Pressure	P	Pascal (Pa)	$\begin{aligned} & \mathrm{kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2} \\ & \text { (force per unit area) } \end{aligned}$
Power or intensity	I	Watt (W)	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3}$
Volume	v	-	m^{3}

Some Important Equations
$\mathrm{KE}_{\text {electron }}=\frac{1}{2} \mathrm{~m}_{\mathrm{e}} \mathrm{u}^{2}$
Photoelectric Effect
$\mathrm{KE}_{\text {electron }}=\mathrm{h} \nu-\mathrm{h} \nu_{\mathrm{o}}=\mathrm{h} \nu-\Phi$
$u=$ velocity of the electron
$\mathrm{m}_{\mathrm{e}}=$ mass of the electron
$\Phi=$ "work function" for the metal
the energy threshold for removing the e^{-}
$v=$ Frequency of the light that is directed on the metal surface
$v_{0}=$ Threshold frequency for the metal

Chemical Symbols

*One or Two Letter Abbreviations
*Carbon: C Oxygen: O Nickel: Ni Gold: Au

Some Important Equations

$$
\begin{aligned}
& \text { EM Radiation } \\
& c=\nu \lambda \quad u=\nu \lambda \\
& \begin{array}{l}
u=\text { wave velocity } \\
v=\text { frequenc }
\end{array} \\
& \mathrm{E}=\mathrm{h} \nu \\
& \mathrm{~h}=\text { Planck's Constant } \\
& \mathrm{h}=6.626 \times 10^{-34} \mathrm{Js} \\
& \mathrm{c}=\text { speed of light }
\end{aligned}
$$

Some Important Equations

$$
\mathrm{E}=\mathrm{h} \nu
$$

Energy of a Photon

$$
E=h \frac{c}{\lambda}
$$

Radius and Energy of $\mathrm{n}^{\text {th }}$ Bohr Orbit
$\mathrm{r}_{\mathrm{n}}=\mathrm{n}^{2} \mathrm{a}_{\mathrm{o}}$ where $\mathrm{a}_{\mathrm{o}}=52.9 \mathrm{pm}$ the Bohr Radius

$$
\mathrm{E}_{\mathrm{n}}=\frac{-\mathrm{hcR}_{\mathrm{H}}}{\mathrm{n}^{2}}=\frac{-2.179 \times 10^{-18} \mathrm{~J}}{\mathrm{n}^{2}}
$$

Some Important Equations

Energy for change of discrete orbits from n_{i} to n_{f}
$\Delta \mathrm{E}<0$ for emission $\Delta \mathrm{E}>0$ for absorption
$\Delta \mathrm{E}_{\text {photon }}=|\Delta \mathrm{E}|_{e^{\text {e }}}$ trasition between orbis
Energy for photon emitted or absorbed for discrete transition between orbits
Note that this energy is simply the absolute value (i.e. positive) of the energy change
Shown above for the transition between orbits

$$
\Delta \mathrm{E}=\mathrm{h} \nu=\mathrm{h} \frac{\mathrm{c}}{\lambda} \quad \text { Energy of a photon }
$$

Some Important Equations

Note that this equation applies to H as well $(\mathrm{Z}=1)$.

$$
\Delta \mathrm{E}_{\mathrm{IF}}=\frac{\mathrm{Z}^{2} \mathrm{hcR}}{\mathrm{H}}
$$

Ionization energy for H -like species (change of discrete orbits from $\mathrm{n}_{\mathrm{i}}=1$ to $\mathrm{n}_{\mathrm{f}}=\infty$ for H -like species...e- removed from atom by input of energy. A photon is absorbed to remove the electron; hence $\Delta \mathrm{E}>0$ for absorption (this is assuming the usual ground state of $\mathrm{n}=1$)

Some Important Equations

Note that these equations apply to H as well $(\mathrm{Z}=1)$...so they are general
Memorize these equations as they are general for $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}$ etc. (Note the Z)
Orbit energy for H-like species (only one electron)

$$
\mathrm{E}_{\mathrm{n}}=\frac{-\mathrm{Z}^{2} h c R_{H}}{\mathrm{n}^{2}}=\frac{-\mathrm{Z}^{2} \cdot 2.179 \times 10^{-18} \mathrm{~J}}{\mathrm{n}^{2}}
$$

$\mathrm{Z}=$ Atomic Number $\mathrm{a}_{\mathrm{o}}=52.9 \mathrm{pm}$

$$
\Delta \mathrm{E}=\mathrm{Z}^{2} \mathrm{hcR}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right) \quad \mathrm{r}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \mathrm{a}_{\mathrm{o}}}{\mathrm{Z}}
$$

Energy change for e^{-}jump between orbits from n_{i} to n_{f} for H like species $\Delta E<0$ for emission $\Delta E>0$ for absorption r_{n} is radius of $\mathrm{n}^{\text {th }}$ orbit

Two New Ideas

*de Broglie Equation predicts that matter should have wavelike properties

$$
\mathrm{P}=\mathrm{mu}=\frac{1}{2}
$$

Multielectron Atoms
$|\Psi(\mathrm{r}, \theta, \varphi)|^{2}=\mathrm{e}^{-}$Probability at $(\mathrm{r}, \theta, \varphi)$
$* \Psi^{2}$ is the probability of finding e^{-}at a single point in space. By mapping Ψ^{2} at all points in 3D space (r, θ, ϕ), we can map the 3D electron probability space for each orbital ${ }_{(r, \theta, \phi)}^{\Psi^{2} \text { Probability at one point }}$
$\begin{array}{ll}\text { Nucleus } \\ \text { At } r=0 & \text { Each electron will "obey" its own wavefunction } \Psi \text { and "explore" a specific } \\ \text { volume in space characteristic of the type of orbital the electron is in }\end{array}$
Each wave function Ψ has four quantum numbers associated with it. So Ψ describes the orbital in which an electron is most likely to be found

Each electron is specified by a set of four quantum numbers... They determine where the electron is found in an atom...Know the rules for the quantum numbers

The End!

THAT'S ALL FOLKS!

GOOD LUCK IN THE REST OF THE CHEM 110 COURSE

