1) (35 points) Manipulation of symbolic expressions
(Java code to be submitted on WebCT). In mathematics, a symbolic expression is an expression that contains variables like x, y... For example, 4 * x + 3 * y and sin(2 * x) + e^x are symbolic expressions. We have seen in class how such expressions can be represented using a (improper) binary tree, where internal nodes correspond to operator (+, -, *, cos, sin, exp) and the children of a node are the operands. For example, the expression x * ((2 + x) + cos(x - 4)) can be represented as:

```
*        
/ \       
/   \      
/     \     
/       \   
/        \  
/         \ 
+          
/ \         
/   \       
/     \     
/       \   
/        \  
/         \ 
+          
/ \         
/   \       
/     \     
/       \   
/        \  
/         \ 
-          
/ \         
/   \       
/     \     
/       \   
/        \  
/         \ 
+          
/ \         
/   \       
/     \     
/       \   
/        \  
/         \ 
2        x
```

The code available at http://www.mcb.mcgill.ca/~blanchem/250/hw4 provides you with a binary tree data structure for storing expressions. It contains a constructor that takes as input a string describing an expression and returns the root of the binary tree storing that expression. The string describing the expression is in the following format.
(1) The only operators considered are add, mult, minus, sin, cos, and exp.
(2) Each operator is followed by its operand(s), in parentheses. If there are two operands, they are separated by a comma.
(3) We only consider expressions with a single variable called x.

Thus, the mathematical expression x * ((2 + x) + cos(x - 4)) should be written as:
```
mult(x,add(add(2,x),cos(minus(x,4))))
```

Another example of notation: the expression cos(3.1416*x + e^(sin(x - 1))) should be written as:
```
cos(add(mult(3.1416,x),exp(sin(minus(x,1))))
```

You are also provided with a method `deepcopy()` which returns a copy of the subtree rooted at the node on which it is called. More precisely, it builds a completely new tree, with new nodes, that is a copy of the original. Make sure you understand what it does, as it is going to be very useful. Finally, the `treeNode` class is equipped with a `toString()` method which prints the whole subtree rooted at a node. This will be useful for debugging.
a) (10 points) Complete the evaluate(double x) method, which returns the value of the expression rooted at the treeNode on which it called, for a particular value of x. For example, evaluate(1) on the tree above should return approximately 2.01.... For sin and cos, angles are measured in radians.

b) (25 points) Complete the differentiate() method, which returns a new expression tree describing the derivative of the expression described by the tree rooted at the treeNode on which it is called. Notice that the original tree should remain intact and that the tree containing the derivative should share no node with the original. For example:

The derivative of...

```
  x  ---+---  1
    +     
  2      x
      +     +
      0      1
      |
      -
      0
  x  4
  x  4
```

The derivative of the original tree is thus:
Notice that the tree above may seem more complicated than necessary. However, it is the one you will most likely end up with after differentiating the original expression. (It could be slightly different but equivalent, and that would be OK). Do not worry about simplifying the expression described by the tree.

Again, that sounds really hard, but it’s not, because the rules of derivation lend themselves very well to the tree representation we are using. Indeed, the chain rule for derivation is a recursive algorithm!

\[
\begin{align*}
d/dx (f(x) + g(x)) &= d/dx f(x) + d/dx g(x) \\
d/dx (f(x) - g(x)) &= d/dx f(x) - d/dx g(x) \\
d/dx (f(x) * g(x)) &= (d/dx f(x)) * g(x) + f(x) * (d/dx g(x)) \\
d/dx (\sin(f(x))) &= \cos(f(x)) * d/dx f(x) \\
d/dx (\cos(f(x))) &= -\sin(f(x)) * d/dx f(x) \\
d/dx (\exp(f(x))) &= \exp(f(x)) * d/dx f(x)
\end{align*}
\]

with the base cases:
\[
\begin{align*}
d/dx (x) &= 1 \\
d/dx (c) &= 0 \text{ for any constant } c
\end{align*}
\]

c) Extra-credit (5 points) Write a method “treeNode simplify()” that returns a new tree simplifying as much as possible the expression described by the tree rooted at the node on which it is called. Your method should reduce to its value any subtree that doesn’t contain “x”. It should simplify expressions of the type 0* f(x), 1* f(x), 0+f(x), etc.

2) (10 points) Binary search trees
Consider a binary search tree that contains \(n \) nodes with keys 1, 2, 3, ..., \(n \).
The shape of the tree depends on the order in which the keys have been inserted in the tree.
a) In what order should the keys be inserted into the binary search tree to obtain a tree with minimal height?

b) On the tree obtained in (a), what would be the worst-case running time of a find, insert, or remove operation? Use the big-Oh notation.

c) In what order should the keys be inserted into the binary search tree to obtain a tree with maximal height?

d) On the tree obtained in (c), what would be the worst-case running time of a find, insert, or remove operation? Use the big-Oh notation.

3) (15 points) Finding the k-th element
Consider the following problem: Given an unsorted array A[0...n-1] of distinct integers, find the k-th smallest element (with k=0 giving the smallest element). For example, findKth([9 10 6 7 4 12] , 0) = 4 and findKth([1 7 6 4 15 10] , 4) = 10.

a) (10 points) Complete the following pseudocode for the findKth algorithm. Your algorithm should have similarities to quickSort and to binarySearch and should call the partition algorithm described in class and used by the quickSort method. You can call the partition without redefining it. Your algorithm should have the running time described in (b).

Algorithm findKth(A, start, stop, k)
Input: An unsorted array A[start...stop] of numbers, and a number k between 0 and stop-
start-1
Output: Returns the k-th smallest element of A[start...stop]
/* Complete this pseudocode */

b) (5 points) Assuming that n is a power of two and that we are always lucky enough that the pivot chosen by the partition method always splits A[start...stop] into two equal halves, show that your algorithm runs in time O(n). You can assume that executing partition(start,stop) takes O(stop-start+1) time.

4) (16 points) Tree traversals
Consider the following pair of recursive algorithms calling each other to traverse a binary tree.

Algorithm weirdPreOrder(treeNode n)
if (n != null) then
Algorithm weirdPostOrder(treeNode n)
if (n != null) then
weirdPreOrder(n.getRightChild())
weirdPreOrder(n.getLeftChild())
print n.getValue()
print n.getValue()
weirdPostOrder(n.getLeftChild())
weirdPostOrder(n.getRightChild())

a) **(4 points)** Write the output being printed when weirdPreOrder(root) is executed on the following binary tree:

```
    7
   / \
  3   9
 /   / \
2   6   8 9
|   |   /   |
1   2  7
```

b) **(4 points)** Write the output being printed when weirdPostOrder(root) is executed.

c) **(4 points)** Consider the binary tree traversal algorithm below.

Algorithm queueTraversal(treeNode n)

Input: a treeNode n

Output: Prints the value of each node in the binary tree rooted at n

Queue q ← new Queue();
q.enqueue(n);
while (! q.empty()) do
 x ← q.dequeue();
 print x.getValue();
 if (x.getLeftChild() != null) then q.enqueue(x.getLeftChild());
 if (x.getRightChild() != null) then q.enqueue(x.getRightChild());

Question: Write the output being printed when queueTraversal(root) is executed.

d) **(4 points)** Consider the binary tree traversal algorithm below.

Algorithm stackTraversal(treeNode n)

Input: a treeNode n

Output: Prints the value of each node in the binary tree rooted at n

Stack s ← new Stack();
s.push(n);
while (! s.empty()) do
x ← s.pop();
print x.getValue();
if (x.getLeftChild() != null) then s.push(x.getLeftChild());
if (x.getRightChild() != null) then s.push(x.getRightChild());

Question: Write the output being printed when stackTraversal(root) is executed. This is the equivalent of what traversal method seen previously in class?
5) **(12 points) Tree isomorphism**

Two unordered binary trees A and B are said to be *isomorphic* if, by swapping the left and right subtrees of certain nodes of A, one can obtain a tree identical to B. For example, the following two trees are isomorphic:

![Two isomorphic trees diagram]

because starting from the first tree and exchanging the left and right subtrees of node 5 and of node 8, one obtains the second tree. On the other hand, the following two trees are not isomorphic, because it is impossible to rearrange one into the other:

![Two non-isomorphic trees diagram]

Question: Write a recursive algorithm that tests if the trees rooted at two given treeNodes are isomorphic. Hint: if your algorithm takes more than 10 lines to write, you’re probably not doing the right thing.

Algorithm `isIsomorphic(treeNode A, treeNode B)`

Input: Two treeNodes A and B

Output: Returns true if the trees rooted at A and B are isomorphic

/* Complete this pseudocode */
6) **(12 points) Heaps**

Let T be a heap storing n keys. Give the pseudocode for an efficient algorithm for reporting all the keys in T that are smaller than or equal to a given query key x (which is not necessarily in T). For example, given the heap below and the query x=7, the algorithm should print 2 5 7 6. Note that the keys do not need to be reported in sorted order. Your algorithm should run in time O(k+1), where k is the number of keys reported. (So you can’t afford to traverse the whole tree.)

```
Algorithm printAtMost(key x, treeNode n)
Input: a key x and a treeNode n (!)
Output: Prints the keys of all nodes of the subtree rooted at n with keys at most x
/* Complete this pseudocode */
```