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Abstract: A key challenge of object recognition is achieving a balance between selectivity for relevant
features and invariance to irrelevant ones. Computational and cognitive models predict that optimal
selectivity for features will differ by object, and here we investigate whether this is reflected in visual
representations in the human ventral stream. We describe a new real-time neuroimaging method,
dynamically adaptive imaging (DAI), that enabled measurement of neural selectivity along multiple
feature dimensions in the neighborhood of single referent objects. The neural response evoked by a
referent was compared to that evoked by 91 naturalistic objects using multi-voxel pattern analysis. Iter-
atively, the objects evoking the most similar responses were selected and presented again, to converge
upon a subset that characterizes the referent’s ‘‘neural neighborhood.’’ This was used to derive the fea-
ture selectivity of the response. For three different referents, we found strikingly different selectivity,
both in individual features and in the balance of tuning to sensory versus semantic features.
Additional analyses placed a lower bound on the number of distinct activation patterns present. The
results suggest that either the degree of specificity available for object representation in the ventral
stream varies by class, or that different objects evoke different processing strategies. Hum Brain Mapp
00:000–000, 2010. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

In the last decade, it has become clear that the fMRI
technique of ‘‘multi-voxel pattern analysis’’ (MVPA) can

be a great asset in understanding the representation of

visual objects within the ventral stream. A classic brain

imaging analysis focuses on whether a broad region of

cortex is activated during a task. In contrast, MVPA

examines what information is present in the distributed

patterns of activity within brain regions. In an influential

MVPA study, Haxby et al. [2001] found that viewing dif-

ferent classes of object evokes distinct patterns of distrib-

uted activity in ventral regions. Although the patterns

were idiosyncratic from subject-to-subject, there was a

consistent relationship between the class of object pre-

sented and the pattern within a subject. MVPA thus

allows more finely differentiated mental states to be
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distinguished from brain activity than had previously

been possible.
Haxby et al.’s object classes differed in many sensory

and semantic features, and so it was not possible to deter-
mine which particular features drove the differences they
observed in activity patterns. Later, MVPA studies have
aimed to distinguish what specific features of objects are
represented. For example, by manipulating abstracted
computer-generated stimuli [Drucker and Aguirre, 2009;
Op de Beeck et al., 2008] it has been shown that some ven-
tral regions encode object shape. Using a broad set of 92
naturalistic objects, Kriegeskorte et al. [2008] showed that
both sensory and semantic features are represented. To do
this, for every possible pair of objects, they calculated a
measure of the similarity of the pair of fMRI activity pat-
terns evoked in a ventral region-of-interest (ROI). Aggre-
gating across all possible pairs, they were able to show
that objects that were more similar in their sensory or
semantic features typically evoked more similar patterns
of activity.

However, studies that aggregate across a large set of
stimuli, cannot address whether tuning to specific features
is homogeneous across the representational space. Was,
for example, semantic class extracted for all objects or just
for a subset? Conversely, were sensory features repre-
sented equally for all objects? That tuning may differ in
the neighborhoods of different objects is suggested by
models of human object recognition [Taylor et al., 2007]
and categorization [Lawson and Powell, 2010]. It is also
predicted by machine recognition models [Ullman et al.,
2002] in which the image fragments used to detect objects
are optimized by class, to be invariant to within-class vari-
ability yet sufficiently specific. For example, color invari-
ance may be observed for the class of roses, but selectivity
for yellow hues may be observed for the class of lemons.
The current study empirically tests this prediction by

measuring whether the strength of representation of differ-
ent types of sensory and semantic feature differs by object
in human ventral visual cortex.

The ability to generalize from abstracted stimuli to com-
plex, naturalistic stimuli requires the influence of each fea-
ture on the neural response to be independent of the other
features. Conversely, evidence from electrophysiology in
monkeys [Rolls and Tovee, 1995] and humans [Quiroga
et al., 2005], neuroimaging [Barense et al., 2010], and com-
putational models [Ullman et al., 2002] demonstrates mul-
tidimensional selectivity to conjunctions of features. Given
the possibility that tuning is complex and potentially dis-
rupted by abstraction, in the current study we used natu-
ralistic stimuli.

To quantify selectivity to multiple features in the repre-
sentational neighborhood of single objects we used a novel
real-time fMRI method. In conventional imaging, subsets
of stimuli are pre-specified and the measurement outcome
is the neural pattern evoked by each. In contrast, in
dynamically adaptive imaging similarity search (DAI-SS,
Fig. F11a) this mapping is reversed and the neural response
is used to select a subset of stimuli. This allowed detailed
characterization of particular neighborhoods in the repre-
sentational space. More generally, our adaptive real-time
method provides a solution to the challenge of dealing
within the vast number of mental states that can be distin-
guished using MVPA while keeping neuroimaging experi-
ments to a tractable length.

METHODS

Overview of Method

For each fMRI acquisition, a referent object was chosen.
DAI-SS was then used to characterize what features of this
referent object were most strongly encoded in the pattern
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Figure 1.

A schematic of DAI (a) and the timeline of the stimuli presented to volunteers (b).
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of BOLD activity in a ventral ROI (Fig.F2 2). To do this, the
pattern of response evoked by the referent stimulus was
compared to that evoked by the other objects using online
MVPA. Initially, 91 objects were presented sequentially in
random order, interleaved with occasional referents and
null events (Fig. 1b). Those evoking the most similar activ-
ity pattern to the referent were then presented again, and
this procedure repeated. After five iterations it converged
upon a ‘‘neural neighborhood’’ (NN) of the 10 items that
evoked the most similar response. This NN could then be
used to characterize feature selectivity in the neighborhood
of the respective referent object. If, for example, the color
of the referent object is strongly represented within its pat-
tern of activity, then the NN of objects evoking a similar
pattern of activity will comprise those that share the refer-
ent’s color.

Choice of Referents

We measured feature selectivity in the neighborhoods of
three different referents. First, to validate the procedure,
we used a face referent. Our ROI included a portion of the
fusiform gyrus (although it skirts FFA), and we expected
the NN to show selectivity for faces, a semantic feature
[Kanwisher et al., 1997]. We present one main and two
supplementary analyses using this face referent, to provide
a measure of consistency. A second referent, a zucchini,
was chosen as it fell on the opposite side of the representa-
tional space in Kriegeskorte et al.’s [2008] study. The third
experiment generalized to a different stimulus set, and
used a bird (owl) as a referent, which was complex and
animate, but not dominated by a face.

Participants

All participants were healthy young adults (age-range:
18–35) with normal or corrected-to-normal vision. Thirteen
participants (four men) performed acquisitions for the face
referent, 10 (four men) for the zucchini referents, and 12
(two men) for the owl referent. Two additional experi-
ments using a face referent are reported in the supplemen-
tary materials to allow the reader to evaluate the degree of
consistency of feature tuning as measured with the DAI-SS
procedure. These each contained 20 participants.

Stimuli

Visual stimuli were presented using DirectX on a
Windows PC running VB.net 2008 Express Edition and
back-projected onto a screen behind the participants’ head
and viewed through a mirror. Images were presented in
the centre of the screen, scaled to fill an invisible square
bounding box of around 3� of visual angle, for 2 s,
followed by a fixation cross for 2 s. Three stimuli were
presented sequentially, followed by a referent, another
three stimuli and a null trial comprising a blank gray
screen for 4 s (Fig. 1b).

For the experiments that used the face and zucchini
referents, the stimuli were 92 pictures of objects from
Kriegeskorte et al. [2008], presented on a mid-gray back-
ground. This set was designed by Kriegeskorte et al. to be
approximately half (52%) animate (here self-propelling
living objects, including faces, human bodies, and animals)
with the remainder inanimate (artificial objects and static
natural objects, e.g., a tree). The alternative picture set
used for the owl referent comprised 385 pictures taken
from Acres et al. [2007], presented on a white background.
They were approximately half (48%) living (no human
faces or body parts but many kinds of animal) and half
non-living objects. Four non-overlapping sets of 91 objects
were distributed across the participants. In each acquisi-
tion, the set of objects was searched to find those that
evoked the most similar pattern of neural activity to the
referent.

Task

For the face and zucchini referents, participants were
asked to remain still and watch the stimuli, and were told
their movements and brain activation were being assessed
in real time. For the owl referent, a simple task was used
to encourage the maintenance of attention—participants
were asked to press one of two buttons to indicate
whether the picture on the screen was ‘‘round’’ versus
‘‘long and thin.’’

MRI Acquisition

All scanning was performed using a Siemens 3T Tim
Trio at the MRC CBU in Cambridge, UK. Functional
magnetic resonance imaging (fMRI) acquisitions used EPI
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Figure 2.

The ventral visual region used for adaptive imaging.
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(TR ¼ 1 s, TE ¼ 30 ms, FA ¼ 78�) with a matrix size of 64
� 64 and in-plane voxel size of 3 � 3 mm. There were 16
slices with a rectangular profile that were 3 mm thick and
separated 1 mm. They were oriented to tip down anteri-
orly, and cover both V1 and the inferior surface of the
occipital and temporal lobe. Each began with 18 dummy
scans during which a countdown was shown to the volun-
teer. An MPRAGE sequence (TR ¼ 2.25 s, TE ¼ 2.98 ms,
FA ¼ 9�) was used to acquire an anatomical image of ma-
trix size 240 � 256 � 160 with a voxel size of (1 mm3).
Structural and functional data analyses were done in real-
time.

ROI

The ROI was defined using a functional localizer that
identified object-selective cortex [Malach et al., 1995] in an
independent study with 15 participants (Lorina Naci, PhD
dissertation, University of Cambridge). The ROI was
derived by contrasting the BOLD response evoked by
masked objects to that evoked by a baseline comprising
the masks alone. Colored images of familiar objects and
3D abstract sculptures were presented briefly (17 ms),
interposed between a forward mask (67 ms) and a back-
ward mask (133 ms). The masks for each object were
derived from phase-scrambling the image of that object. In
the baseline trials, instead of an object, an empty white
display was presented interposed between two masks. The
BOLD data for this localizer were thresholded at P < 0.001
uncorrected. The ROI encompassed ventro-lateral occipital
regions and extended anteriorally into a lateral fusiform
region of inferior temporal cortex (Fig. 2).

DAI-SS

An evolutionary algorithm was used in which objects
were iteratively selected in multiple ‘‘generations.’’ Each
run of adaptive imaging was broken into five generations.
In the first generation, all 91 stimuli were presented once
in a random order, interleaved with the referent and null
trials as described above. At the end of the generation,
there was then a 24 s gap in which a message ‘‘There fol-
lows a short pause...’’ was shown until 4 s before the
recommencement of the next generation of object images.
During this time, real-time MVPA analysis was performed
to identify the objects that evoked the most similar pattern
of neural activity to the referent. The MVPA method used
Pearson correlation to compare the spatial pattern of the
parameter estimates in the ROI for the referent with that
for each of the other objects. Like others [Haxby et al.,
2001; Kriegeksorte et al., 2008] we have found the distance
metric of correlation to be effective for MVPA. In the
second generation, the 24 most similar items (i.e., highest
correlation values) were presented, and the procedure was
iterated. The generation sizes were 91, 24, 20, 16, and 13
objects. The number of generations and their size was opti-
mized by simulations prior to the experiments.

Real-Time Neuroimaging Analysis

Real-time analysis software was written using Matlab
2006b and components from SPM 5, and is freely available
with an open-source license. It was run on a stand-alone
RedHat Enterprise 4 Linux workstation. The real-time
analysis system implements image pre-processing and sta-
tistical modeling, as well as DAI in which the ongoing
fMRI results are used to contingently modify the stimulus
list.

In the real-time system, an event handler triggered the
appropriate actions as fMRI data arrived. When an ana-
tomical image was received, it was converted from
DICOM to NIFTI and normalized to the MNI template.
This was used to derive the back-normalization from
standard space where the ROI was specified, to the indi-
vidual subject’s brain. On receipt of an EPI, this ROI was
re-sliced to the native space of the EPI, for use in subse-
quent analysis. The EPI images were motion-corrected and
high-pass filtered (cutoff 128 s).

At the end of each generation, the data from the ROI
were extracted and modeled using linear regression. Each
of the 92 object regressors was formed from 2-s-long box-
cars starting at the onset of each presentation of that
object, convolved with the canonical hemodynamic
response as defined with SPM. To remove noise, addi-
tional ‘‘spikes and moves’’ regressors were included to
model out scans that relative to the previous scan had ab-
rupt movements (>0.5 mm of translation or >1 degree of
rotation along any of the x, y, and z axes) or changes in
global signal (sum of squared difference between images
is more than 1.5% of the globals squared). We have found
this strategy to be more effective for fMRI studies in which
the volume acquired is small (as here, with only 16 slices).
If a big portion of the small volume is functionally respon-
sive, BOLD activity due to the paradigm can influence the
motion estimation. In this circumstance, using a traditional
strategy of modeling out all effects that correlate with the
realignment parameters removes valuable signal. In con-
trast, BOLD activity alone cannot trigger the introduction
of spikes and moves regressors, making this method more
robust.

As the parameter estimates of the object and referent
were calculated across all generations acquired to that
point in the imaging run, it was possible for objects not to
be selected for one generation, but then re-enter in the
next generation. Following the final generation, the 10
most similar items were selected as the ‘‘neural neighbor-
hood’’ (NN) of the referent.

Offline Analysis of Consistency and Feature

Tuning

To test for the consistency of the NNs across partici-
pants, a permutation test was performed. This examined
whether some items were selected for the NN more fre-
quently than would be expected by chance. To model the
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data under the null hypothesis, in each permutation 10
items were selected at random without replacement from
91. We created separate simulations for each participant
(N ¼ 13 or N ¼ 12) and generated a group level measure
by identifying the 10 items that occurred most frequently
across the simulated participant data. As a summary sta-
tistic, we calculated the mean occurrence frequency of
these ten items. This was repeated 40,000 times to obtain a
distribution of the statistic. The same statistic was calcu-
lated for the actual experimental data and compared to
the distribution to obtain the P value of this value occur-
ring by chance under the null hypothesis.

The sensory features extracted from each image are
illustrated in FigureF4 4 and listed in TableT1 I. In addition to
these feature valuesAQ2 that were derived for individual
images, a measure of the pairwise similarity of the shape
of the referent to each image was calculated using a Gabor
jet model similar to that used by Kim et al. [2009]. Follow-
ing down-sampling to an �60 � 60 pixel grid, each image
was fit with a set of multi-scale Gabor jets centered on
each point in a 9 � 9 grid spanning the image. Each jet
comprised Gabor functions (extending to 3 s.d. of their en-
velope) at eight orientations and across five logarithmically
spaced wavelengths (pi/8 to pi/2), giving 40 Gabors per
grid point. The Gabor model was fit to each image using
linear regression, and the pairwise dissimilarity between
images defined as the sum of the squared difference of
their Gabor coefficients, normalized through division by
the product of the magnitudes of the Gabors of each of the
images.

The semantic features for each picture set reflected their
main sub-categories with more emphasis on the types of
objects used as referents (a face, zucchini, and an owl). For
the set of objects from Kriegeskorte et al. [2008] we used
their distinction into nearly equal animate versus inani-
mate groups and then classified by human, face, fruit, or
vegetable. For the Acres et al. [2007] set, we used their
classification into nearly equal living versus non-living

groups, and of the former into categories prominent in the
set: bird; mammal-amphibian; and other animal groups.
There were human bodies and faces in the Kriegeskorte
et al. [2008] but not the set from Acres et al. [2007].

For each acquisition, across the set of 91 objects (exclud-
ing the referent) the features were standardized to a z
score. In each experiment, for each subject we took a mean
of each feature across the 10 items in the NN. If object
selection were random, the expected value of the mean of
every feature across the NN would be zero. Statistics were
calculated using a one-sample t test across subjects.

We also tested whether the features for which selection
was found in the NN of a given referent had more
extreme values in that referent. To do this, we identified
two groups of features—those for which selection was
found (from the one-sample t tests in the last paragraph)
with those that were not. We then compared the magni-
tude of the referent’s feature values between these two
groups using a two-sample t test.

Relating Groups of Features to NN Using

a Classifier

We used a linear-discriminant classifier to assess the
effectiveness with which a set of features describing an
object could be used to predict whether that object would
make it into the NN. For each referent, a classifier was
trained to discriminate objects that were selected for the
NN from those that were not, on the basis of their feature
vectors. A leave-one-out strategy across subjects was used,
with training performed on all but one subject and the
classifier’s performance was then tested on the remaining
subject. To quantify the importance of different kinds of
information in determining a NN, three feature sets were
used: (1) all of the features; (2) only the sensory features;
and (3) only the semantic features. A repeated-measures
ANOVA with factors ‘‘subset type’’ (all/sensory/semantic)
and ‘‘referent’’ (face/zucchini/owl) was then used to
assess the classification performance.

Model-Free Feature Analysis

Principle Component Analysis was used to identify the
components that underlied the spatial patterns across the
92 objects. To provide the input data for this, a new GLM
was set up using SPM to model just the responses to the
first generation of adaptive imaging (i.e., a single presenta-
tion of each object). This was done for the two sessions
that used the Kriegeskorte et al. [2008] stimuli, with the
face and zucchini referent. Following PCA on the beta
maps for each object, the distribution of the magnitudes of
the resulting components was examined for a ‘‘knee’’
inflection point, to provide an estimate of the dimensional-
ity of the data.

To identify whether the principal components of the
activation patterns originated neurally or were imaging
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TABLE I. Derivation of perceptual features

Feature Derivation

Size Number of pixels
Contrast Mean of sum of squared difference

of each color channel from
background color

Color (hue) H value of mean color in HSV space
Color (lurid) Mean of standard deviation across

RGB for each pixel
Shape (thin) Ratio of eigenvectors from Cartesian

coordinates of occupied pixels
Shape (horizontal) Thinness multiplied by orientation

transformed into upper right
quadrant (0 ¼ horizontal, pi/2 ¼ vertical)

Calculations performed on all pixels that were not the background
color.
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artefacts, we applied a linear-discriminant classifier to
quantify whether the patterns varied in a way consistent
with the object being shown to the participant. To do this,
in all subjects for which we had multiple sessions (N ¼ 12
with 3 sessions, N ¼ 1 with 2 sessions) we performed a
nested leave-one-out procedure across sessions and
objects. In each iteration, a single session was allocated for
testing and the remainder used to train a classifier. A sin-
gle target object was chosen. The classifier was trained to
distinguish from the activation pattern evoked by an object
whether it was the target or a non-target. Performance
was evaluated using signal detection theory on recognition
performance for the test block: we quantified hits (classi-
fier identified as target a correct object) and false alarms
(classifier identified as target an incorrect object), averaged
these across all sessions in a subject, and then calculated
d-prime. This procedure was repeated with each of the
objects chosen as the target in turn, and an average taken
across objects for each subject. Statistics were then per-
formed across subjects. This analysis was repeated first for
just patterns formed from the first principle component,
then the first two components, and so on, to obtain a
measure of single-object classification performance as a
function of the number of components. The growth in clas-
sification performance with the number of components
was quantitatively investigated. To increase SNR on what
would be expected to be a noisy measurement, we aver-
aged the d-prime scores in groups of 6 (i.e., components
1–6, 7–12, 13–18, 19–24) and performed t tests between
successive groups with subject as a random factor.

RESULTS

First, a human face was used as a referent (N ¼ 12).
DAI-SS converged upon a NN that was consistent across
participants (Fig. F33a), with some objects selected more
frequently than chance (on average each object in the top
10 was found in the NN of 4.6/12 participants, permuta-
tion test, P < 0.0001) and others rejected more frequently
than by chance (mean frequency of bottom half of objects
0.17/12, P < 0.0001). To identify what drove the selection
of the items that comprised the NN, we quantified sensory
and semantic features of each object, and standardized
each feature to give zero mean and unit standard devia-
tion across the objects in the initial stimulus set. Randomly
selecting from this set would yield features values that
were distributed around zero. In contrast, in the NN,
non-zero values were observed along several feature
dimensions, indicating selectivity (Fig. F55a, statistics from
one-sample t tests on graph and in Table T2II), most strongly
along a number of semantic feature dimensions. In an
additional analysis, in which face stimuli were excluded,
tuning to animacy persisted, indicating tuning did not
merely reflect a face-selective response (Table II, right col-
umn). In summary, as predicted, there was strong tuning
to faces.
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Figure 3.

The neural neighborhoods (NNs) of the face (a), vegetable

(b), and bird (c) referents. In columns (a) and (b), the items are

ranked in order of the % of participants for which the item was

found in the NN (top ¼ most frequent). This measure could

not be used for the bird referent as different stimuli were used

across participants, and instead in column (c), we ranked the

items by the similarity of the neural response they evoked to

the referent (most similar is top item with low score on dissimi-

larity metric, see Methods). Note columns (a) and (c) are domi-

nated by living objects.
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We then investigated why the NN for this referent
reflected selection for particular features. Was it because the
cortical region is tuned for some features but invariant to
others, or was it determined by how the referent’s features
differed from other objects in the initial set? We compared
the magnitude of the referent feature values for dimensions
for which the NN was or was not selective. There was no
significant difference, suggesting selection reflected neural
tuning to specific features [t (9) ¼ �1.03, ns].

With any new technique, it is reassuring to see replica-
tion. It is also informative in the current experiment to
establish how sensitive the measurement of feature tuning
is to the exact subset of stimuli, the configuration of the
stimuli and the specific task. In two supplementary experi-
ments, we repeated the DAI-SS procedure for the face refer-
ent, but with new groups of volunteers and substantial
differences in the stimulus set, stimulus configuration, and
the task (Supplementary Methods). Despite these changes,
similar feature tuning was obtained (Fig. S1), demonstrating
the replicability and generalizability of the method.

Tuning Differs By Object Neighborhood

As discussed above, previous models have suggested
that feature tuning should differ in the neighborhood of
different objects. To test this, we ran DAI-SS with another
referent, a vegetable (N ¼ 10), chosen as it evoked a highly
distinct neural pattern in Kriegeskorte et al. [2008]. Again,
consistency was found in the NN (Fig. 3b) across individu-
als (on average each object in top 10 occurred in 3.6/10
participants on average, P < 0.01 in permutation test;
objects in bottom half in 0.19/12, P < 0.005). The NN
reflected selectivity for several features, but along different
dimensions to the face referent (Fig. 5b, Table II). As
before, the distinctiveness of the referent’s features was
not related to the likelihood of them characterizing the
NN [t (9) ¼ 1.28, ns]. Directly comparing it with the face
referent revealed NNs with different feature selectivities
(see Table II, right column).

DAI-SS was then run for a third referent, a bird (N ¼ 12).
We generalized to a stimulus set that was even broader
and varied across participants [Acres et al., 2007]. The NN

is shown in Figure 3c, and feature tuning in Figure 5c and
Table III. The general consistency measure used for the
other two referents could not be used because of the varia-
tion in stimulus set across participants but a separate mea-
sure was obtained from the classifier described later. The
DAI-SS procedure was effective for this new stimulus set,
comprising across participants 384 objects. Different
patterns of feature tuning were found for this referent com-
pared to the other two referents. The distinctiveness of the
referent’s features was again unrelated to the likelihood of
them characterizing the NN [t (10) ¼ �0.24, ns].

Relating Groups of Features to NN

Using a Classifier

The classifier was able to relate the features to the NN
reliably, but based on different balances of sensory and
semantic features for the different referents (Fig. F66). A
mixed-effects ANOVA for the two referents (face, zuc-
chini) probed with the same objects using a within-subject
factor of feature subset type (perceptual or semantic) and
a between-subjects factor of referent showed a subset by
referent interaction [F (1, 21) ¼ 17.3, P < 0.001] and a
main effect of subset [F (1, 21) ¼ 4.53, P < 0.05], but no
main effect of referent [F (1, 21) ¼ 3.56, ns]. A more gen-
eral ANOVA including all three referents (face, zucchini,
or owl) similarly yielded a subset by referent interaction
[F (2, 32) ¼ 6.90, P < 0.005], an effect of subset [F (2, 32) ¼
8.98, P < 0.005], and no effect of referent [F (1, 32) ¼ 3.03,
ns]. The robust subset by referent interactions show that
sensory and semantic features contributed to different
extents to the neural tuning around the different referents.

Model-Free Feature Analysis

We found no single feature that could account for tuning
across referents. However, some feature not included in our
analysis might more simply explain the results. To address
this, we conducted further analyses that were agnostic
about which features the region encodes, but focused upon
how many. The patterns of neural response evoked by each
of the 92 objects were entered into a Principal Components
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Figure 4.

Sensory features illustrated with stimuli from set containing the face and vegetable referents.

The lowest- and highest-valued 12 objects are shown for each feature dimension.
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Analysis (PCA) to find the key modes of spatial variation.
The scree plot (Fig.F7 7) shows the magnitude of each of the
components. The inflection in this plot can be taken as an
estimate of the dimensionality of the data, and suggests at
least 20–25 distinct activation patterns, perhaps correspond-
ing to at least 20–25 features.

As a greater number of principal components were used
object classification performance increased, showing that
the components were not imaging artefacts, but instead
carried information about the stimulus. Classification per-
formance reached an asymptote at around 20–25 compo-
nents, suggesting that until this point the components
carried useful information for stimulus discrimination, and
independently supporting the lower bound on the number
of features estimated from the scree plot. To improve SNR,
the results were grouped into sets of six components and
averaged within each subject. As illustrated in the top left
of Figure 7, the comparison components 1–6 and 7–12,
7–12 and 13–18, and 25–31 and 32–37 all reached signifi-
cance (all P < 0.05).

DISCUSSION

DAI-SS and PCA revealed that visual representations of
naturalistic objects in ventral cortex are multidimensional,
with selectivity to combinations of semantic and sensory
features differing by NN. More specifically, the NN of the
face and owl referents is characterized by relatedness in
semantic features, while the NN of the zucchini referent is
characterized by relatedness in sensory features. This
might reflect the pattern of tuning in the feed-forward
pathway, or differing extents of evolution in predictive
coding or competition. In these frameworks, perceptual
information is initially encoded, but becomes suppressed
as semantic representations emerge at later stages in a
processing hierarchy. It might also be that the difference
in tuning across NNs is a result of different neuro-cogni-
tive processes being recruited to analyze different kinds of
objects. Specific processes have been proposed, for exam-
ple, for living things [Taylor et al., 2007], for faces [Tsao
et al., 2006], and for stimuli for which we have developed
expertise [Tarr and Gauthier, 2000]. Perhaps, the face and
owl referents engage specific modes of perceptual analysis,
or exogenously evoke a greater depth of processing, than
the zucchini referent. Future work with even larger object
sets could more precisely characterize NNs, identify the
key cognitive processes, the basis functions used to repre-
sent object space, and the neural structure of the code
(e.g., local, sparse, or distributed).

Our results provide little evidence that task modulates
the feature selectivity of the region. For the first referent,
we obtained similar results for passive viewing and two
replications with a memory task. For the third referent
(the bird) participants were asked to perform a simple per-
ceptual task (round vs. thin/long), but despite this we
found greater tuning for semantic features, suggesting that
some or all of the response may not be modulated by task.
We have collected further data (to be reported elsewhere)
that supports the view that this ROI is only weakly task
dependent. It might be that more anterior temporal or
frontal regions are the primary sites of task modulation.
Those regions might selectively encode the task relevant
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Figure 5.

The features of the NNs following DAI Similarity Search (DAI-

SS) for the face (a), vegetable (b), and owl (c) referents (Mean

� one standard error). The asterisks denote the results of t

tests for feature selectivity across subjects. Asterisks in black

denote P values Bonferroni corrected by the number of features

tested (*P < 0.05, **P < 0.01, ***P < 0.001), and those in gray

the uncorrected significance (see also statistics in Tables II and

T3 III). The red circles show the feature values for each referent.
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features in any given context, as in the model of ‘‘adaptive
coding’’ [Duncan, 2001]. Alternatively, it is possible that
task does change the neural response even in the more
posterior regions we studied, but the changes are of a
form that cannot be detected with fMRI or with MVPA
(e.g., in sub-second timing or the sub-millimeter neural
pattern).

A limitation of studies relating object features to neural
representation is that they require the a priori construction
of features that might be important. The current study has
attempted to relax this limitation in two ways. First, DAI-
SS has allowed many features to be investigated simulta-
neously, reducing the requirement for a priori selection
common in conventional designs that probe just one or

two features. Second, we have conducted model-free fea-
ture analyses using PCA. However, we have not investi-
gated all possible features, and the power of any
experiment to detect the effect of a feature is determined
by the degree of variability in the stimulus set used. DAI
is less constrained, but it is not without any limitations.

Although naturalistic stimuli were used in the current
study, to address concerns that results from abstracted
stimuli may not always generalize, it would be entirely
possible to use DAI with abstracted stimuli. Indeed, an
analogous method was used to great effect by Yamane
et al. [2008] who investigated the representation of three-
dimensional shapes in monkey inferotemporal cortex by
using electrophysiology. In their adaptive paradigm, a
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TABLE II. Features of face and zucchini referents and their NNs

Feature

Face similarity (N ¼ 13)

Pa

Zucchini similarity (N ¼ 10)

Pa

Face versus
zucchini

Referent NN mean t (12) Referent NN mean t (9) t (21) Pa

Size 0.06 0.08 1.06 �1.57 �0.21 �3.53 (<0.01) 2.79 (<0.02)
Contrast 0.30 �0.16 �2.36 (<0.05) 0.31 �0.09 �0.84 �0.63
Color (hue) �0.66 �0.16 �2.02 0.22 �0.13 �1.56 �0.23
Color (lurid) 0.27 �0.19 �4.86 <0.005 �0.81 0.14 2.48 (<0.05) �4.96 0.001
Shape (thin) 0.19 �0.12 �1.23 3.88 0.23 2.83 (<0.02) �2.67 (<0.02)
Shape (horizontal) �0.83 �0.26 �4.71 <0.005 4.00 0.45 5.65 <0.005 �7.57 0.0001
Shape (gabor jet) NAb �0.16 �1.76 NAb �0.37 �4.09 <0.05 1.66
Animate 0.96 0.73 11.6 <0.0001 0.60 �0.17 �1.93 8.50 0.0001
Human 1.71 0.35 3.60 <0.05 0.60 �0.12 �1.71 3.70 0.05
Face 1.71 0.78 6.63 <0.001 2.24 �0.21 �2.56 (<0.05) 6.48 0.0001
Veg–fruit �0.46 0.38 �10.9 <0.0001 �1.74 0.20 2.03 �6.09 0.0001

aP values in upright font are Bonferroni corrected for number of comparisons. P values in italics and parenthesis are uncorrected.
bThe gabor-jet measure is one of the pairwise similarity between the referent and each object, and so does not have a meaningful value
in isolation.

TABLE III. Features of bird referent and its NN

Feature Referent NN mean t (11) Pa

Size �0.61 �0.07 �0.81
Contrast �0.20 0.05 �1.67
Color (hue) �0.59 0.08 0.78
Color (lurid) 0.44 �0.14 �1.67
Shape (thin) �0.11 �0.07 �1.07
Shape (horizontal) �0.80 �0.01 �0.13
Shape (gabor) NAb �0.05 �0.55
Living 1.05 0.21 3.96 <0.05
Bird 4.08 0.30 2.51 (<0.05)
Mammal/amphib. �0.38 0.20 1.54
Other animal �0.32 0.23 2.36 (<0.05)
Veg–fruit �0.40 �0.073 �0.68

aP values in upright font are Bonferroni corrected for number of
comparisons. P values in italics and parenthesis are uncorrected.
bThe gabor-jet measure is one of pairwise similarity between the
referent and each object, and so does not have a meaningful value
in isolation.Additional Supporting Information may be found in
the online version of this article.
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Figure 6.

The performance of a linear-discriminant classifier in predicting

each referent’s NN from different subsets of features.
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genetic algorithm was used to select stimuli that evoked
the maximal response. An advantage of using adaptive
methods with abstracted stimuli is that new stimuli can be
generated online on the basis of imaging results, allowing
an even larger stimulus space to be explored. Future
experiments might use DAI to try to relate neural tuning
for given natural referent stimuli and artificial stimuli, to
more specifically identify what stimulus characteristics
influence selectivity profiles.

Although DAI experiments focus on the measurement
of particular parameters (here, multidimensional feature
selectivity), this optimization does not come without cer-
tain trade-offs. An important trade-off of the current
adaptive imaging method, DAI-SS, is that only one ROI is
characterized. As the stimuli are modified on the basis of
the patterns evoked in this region, it is not possible to cal-
culate retrospectively after an acquisition what would
have happened had a different region been chosen. Also,
it is not straightforward to interpret results from other
parts of the brain using conventional imaging analyses, as
the stimuli have been chosen on the basis of a response in
the target region. In the current paradigm, for example, it
would be interesting to assess feature selectivity in sub-
regions of our ventral ROI. These questions could however
be addressed with further DAI-SS experiments. Another
trade-off of DAI-SS is that it characterizes selectivity in
the region of a single stimulus, rather than for the entire
stimulus space as representational similarity analysis does
[Kriegeskorte et al., 2008]. Of course, in some circumstan-
ces (like the current investigation), the specificity of this
characterization is a strength.

These trade-offs point to areas of future developments
for the DAI technology. Other methods of using DAI
could have different patterns of costs and benefits. DAI
paradigms might search out brain regions that respond in
a similar manner, or search out features that are most im-
portant across the whole stimulus space. An ever-present
danger in neuroimaging, particularly in newer domains of
investigation (like cognitive and social neuroscience)
where structure-function mappings are less constrained, is
that experiments are designed to test narrow hypotheses
that perpetuate existing models. By allowing more data-
driven and less paradigm-constrained designs, DAI has
the potential to allow theory to break out of cycles of cir-
cularity and encourage the development of innovative
new models. We expect many new adaptive imaging para-
digms will be developed to tackle particular questions.
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Figure 7.

Magnitude of principle components (blue, left axis)—the knee

provides an estimate of the neural activation patterns’ dimen-

sionality. To test whether these components provide functional

information about brain activity, or merely imaging artifacts, a

classifier was trained to distinguish the neural patterns of single

objects from all of the other objects in a leave-one-out fashion.

As the number of principle components used for the neural

patterns increased, the performance of the classifier also

increased, showing these components add useful information

(purple, right axis).
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