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Phase contrast magnetic resonance velocity imaging is a powerful technique for quantitative
in vivo blood flow measurement. Current practice normally involves restricting the
sensitivity of the technique so as to avoid the problem of the measured phase being
‘wrapped’ onto the range —m to +m. However, as a result, dynamic range and signal-to-noise
ratio are sacrificed. Alternatively, the true phase values can be estimated by a phase
unwrapping process which consists of adding integral multiples of 27 to the measured
wrapped phase values. In the presence of noise and data undersampling, the phase
unwrapping problem becomes non-trivial. In this paper, we investigate the performance of
three different phase unwrapping algorithms when applied to three-dimensional (two spatial
axes and one time axis) phase contrast datasets. A simple one-dimensional temporal
unwrapping algorithm, a more complex and robust three-dimensional unwrapping algorithm
and a novel velocity encoding unwrapping algorithm which involves unwrapping along a
fourth dimension (the ‘velocity encoding’ direction) are discussed, and results from the three
are presented and compared. It is shown that compared to the traditional approach, both
dynamic range and signal-to-noise ratio can be increased by a factor of up to five times, which
demonstrates considerable promise for a possible eventual clinical implementation. The
results are also of direct relevance to users of any other technique delivering time-varying
two-dimensional phase images, such as dynamic speckle interferometry and synthetic
aperture radar.

Keywords: phase unwrapping; phase contrast velocity imaging; blood flow measurement;
image processing; magnetic resonance imaging; speckle interferometry

1. INTRODUCTION

Many measurement techniques across a variety of
engineering, scientific and medical disciplines deliver
quantitative information in the form of phase images.
For example, in the field of optical interferometry,
phase extraction through the recording of phase-shifted
intensity images has become the standard method for
automatically analysing the shapes of two interfering
wavefronts. In experimental mechanics, similar anal-
ysis methods are used routinely to process fringe
patterns from techniques such as moiré photography
and photoelasticity. Synthetic aperture radar maps
terrain and deformation of the Earth’s surface through
phase images on length-scales some 10"-10° times
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greater than the first two examples. One of the areas
of fastest growth is probably in phase contrast medical
imaging techniques, notably magnetic resonance ima-
ging (MRI), X-ray interferometry and optical coher-
ence tomography. In all these fields, advances in
hardware and reduction in cost of acquisition mean
that three-dimensional datasets (typically three spatial
axes for tomographic measurements, two spatial axes
and a time axis for dynamic problems) is now common-
place and may soon become the default choice over the
two-dimensional datasets that were hitherto the norm.
The parallel development of numerical algorithms able
to handle such three-dimensional phase volumes—and
exploration of potential benefits from algorithms work-
ing on datasets with still higher dimensionality—is
important if one is to maximize the potential benefits to
society of these techniques.

© 2005 The Royal Society
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The most difficult of these algorithms, and the one
that is central to all the techniques mentioned above, is
that of phase unwrapping. This is the process of adding
integral multiples of 27 to the measured ‘wrapped’
phase (i.e. phase values that lie in the range — to + )
at all the pixels or voxels in the image. In the case of
MRI, for example, the measured phase is wrapped
because we can only determine the final phase of the
spins, and not the number of rotations taken to get
there. While the phase is proportional to the physical
quantity of interest for small changes, for larger
changes, it is wrapped onto the range —w to +.

Phase unwrapping is a trivial process on data that is
free of noise and has been sampled in accordance with
the Shannon sampling theorem; however, practical
datasets almost always contain regions that are noisy or
sub-sampled, leading to ‘singular’ points (in two
dimensions) or lines (in three dimensions) in the
phase field. In two dimensions, the singular points are
identified by counting the number of 27 phase jumps
around all possible 2X2 pixel squares in the image.
A positive or +1 singularity is present if the result of
the integration is +1, and a negative or — 1 singularity
is present if the result is —1. The only other possible
resulting value is 0, in which case no singularity is
present. The term singularity (as opposed to the terms
‘pole’ and ‘residue’ which are sometimes used in the
literature) will be used throughout this paper for
consistency with Huntley (2001). The effect of such
singular points on the unwrapping process is illustrated
in the wrapped two-dimensional phase map of figure 1.
The number of 27w phase jumps required to unwrap
point Q, given the phase at P, is path-dependent: path
A crosses three phase jumps, whereas path B crosses
two. The presence of the two phase singularities, points
1 and 2, caused by local undersampling of the phase
map, can, therefore, result in the global propagation of
large (2m) phase errors.

1.1. Ezxisting one-dimensional, two-dimensional
and three-dimensional phase unwrapping
algorithms

While from a rigorous mathematical viewpoint it is
impossible to recover the unwrapped phase unambigu-
ously in the presence of singularities, additional ad hoc
assumptions can often be made to come to a solution
that is acceptably close to the true unwrapped phase in
many situations. A large variety of different two-
dimensional unwrapping algorithms has been
developed to reduce the influence of the singular points
(Ghiglia & Pritt 1998). They can be broadly classified
as path-following methods, which guide the unwrap-
ping path in order to prevent error propagation, and
minimum-norm methods, which seek to minimize a cost
function that measures the difference between the
gradients of the original wrapped phase and the
estimated unwrapped phase. The minimum-norm
methods have some drawbacks such as requiring the
use of iterative solution methods and in certain cases
introducing systematic errors to the reconstructed
phase field (Ghiglia & Pritt 1998).

J. R. Soc. Interface (2006)

Figure 1. Wrapped phase map (black and white representing,
respectively, —m and +m) containing two singular points
1 and 2 results in path-dependent unwrapped phase at point Q.
(Reprinted, by permission, from Huntley & Saldner 1993).

Among the path-following methods, one of the most
direct is to place branch cuts within the phase map
between pairs of singular points of opposing signs to
make the unwrapped results independent of the
unwrapping path (Huntley 1989). In the example
shown in figure 1, point 1 would be joined to point 2
by the cut and path B would not be allowed. All paths
not crossing the branch cut then agree on the integral
multiple of 27 to be added to the phase at Q.

There are relatively few published papers on the full
three-dimensional phase unwrapping problem. The
simplest approach is to unwrap each slice indepen-
dently using one of the two-dimensional methods.
However, this requires correction of the resulting
phase offset among slices. Furthermore, taking into
account the three-dimensional nature of the data can be
an advantage to improve the unwrapping process, as in
the extension to three dimensions of the two-dimen-
sional branch cut method (Huntley 2001).

In three dimensions, the singularities form closed
phase singularity loops (PSLs). A path-independent
unwrapping process requires branch surfaces limited by
the closed loops to be established. The advantage of
using the full three-dimensional volume as opposed to
unwrapping each two-dimensional slice independently
is the elimination of the ambiguity that arises when
pairing singularities of opposing signs in a two-
dimensional phase map. As pointed out by Huntley
(2001), the presence of knot points, i.e. cubes of 2 X2 X 2
voxels into which two PSLs enter and out of which two
PSLs leave, still represents an ambiguity in that it is
not known whether the singularities form a single loop
or two separate but linked loops. Subsequent develop-
ments in the algorithm (Marklund et al. 2005) now use a
recursive tree structure to find the set of loops with
minimum length. The concept of loop structures within
three-dimensional phase volumes was also discovered
independently by Cusack & Papadakis (2002) and by
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Chavez et al. (2002), though it was not developed into a
full path-independent algorithm in either case.

An N-dimensional phase unwrapping method was
presented by Jenkinson (2003). This method divides
the volume into regions that contain no phase wraps.
A cost function that measures the difference in phase
values at the interface of adjacent regions is minimized.
Those regions for which the cost function is minimum
are merged after adding the optimum offset found, and
the process continues until there is only one region left.
Although intuitively appealing, one significant problem
with this approach is that if the measured wrapped
phase is undersampled there will be 2@ phase jumps
missing which will never be recovered by Jenkinson’s
algorithm.

Temporal unwrapping, originally proposed for
speckle interferogram analysis (Huntley & Saldner
1993, 1997a) and subsequently introduced indepen-
dently by Xiang (1995) in MRI applications, is another
method that can be used to unwrap CINE phase contrast
magnetic resonance imaging (PC-MRI) phase volumes.
The phase of each pixel as a function of time is
unwrapped independently of the rest of the pixels in the
image. The advantage of this one-dimensional
approach is that, as opposed to spatial unwrapping,
boundaries and regions with poor signal-to-noise ratio
do not affect the unwrapping result in regions where the
data is good. However, it relies on adequate sampling
along the time axis. Another potential problem is
cardiac motion, which can cause unwrapping errors due
to misregistration of the images from frame to frame.
Yang et al. (1996) introduced a motion-registered
temporal unwrapping method followed by spatial
phase unwrapping to overcome this problem.

1.2. Velocity mapping by phase contrast MRI

The phase imaging technique used throughout this
paper (PC-MRI) is based on detecting changes in the
phase of the transverse magnetization of the blood as it
moves in the presence of a magnetic field gradient. PC-
MRI uses bipolar gradient pulses to produce a linear
relationship between the velocity of blood v and the
phase shift of the magnetic resonance signal ¢:
'U((.b) — ¢ Venc ,

™

(1.1)

where V.. is a constant called the velocity encoding
parameter. V., is related to the amplitude and
duration of the bipolar gradient pulse, and is equal to
the velocity that results in a phase shift of 7 radians
(McRobbie et al. 2003). Combining PC-MRI with
cardiac triggering, using ciNE PC-MRI, results in a
temporal series of two-dimensional phase contrast MR
images of a single slice at multiple time points (phases)
throughout the cardiac cycle to form a three-dimen-
sional (two spatial axes and one time axis) phase
volume.

When V. is smaller than the peak blood velocity,
the phase is wrapped onto the range [—m,m), and it is
necessary to unwrap it in order to obtain the true
velocity values. The standard procedure at present is to
avoid the phase wrapping problem by choosing V.

J. R. Soc. Interface (2006)

values equal to or larger than the maximum velocity of
the blood. However, this may compromise the accurate
measurement of the lower velocities close to the walls of
the arteries, an important requirement for measuring
wall shear stresses, which are proportional to the radial
derivative of the velocity at the wall.

The purpose of this paper is to present the results of a
comparison between the performances of the path-
independent three-dimensional phase unwrapping
algorithm and the temporal unwrapping method on a
set of phase contrast ciNe MRI images obtained with
different encoding velocities. A modification to the first
algorithm is introduced in order to process particular
PSLs that may appear in spatial-temporal volumes.
Exploitation of data with still higher dimensionality is
considered through a wvariation on the temporal
approach, in which velocity encoding is used as the
unwrapping direction along, in effect, a fourth dimen-
sion. The performance of this new algorithm is
evaluated. The improvements in signal-to-noise ratio
which result from the lower V., values that such
unwrapping algorithms permit are quantified, and
typical velocity and wall shear strain rate profiles are
presented. Finally, a general proof of the continuity of
the PSLs is presented for the first time. Although the
application considered here is specific to PC-MRI, the
results are also of direct relevance to users of any
technique delivering time-varying two-dimensional
phase images.

2. METHODS
2.1. Phase contrast cine MRI

Six phase contrast ciNe MRI acquisitions through the
ascending aorta and descending aorta of a single subject
were obtained using a 1.5T magnetic resonance
scanner (Echospeed, GE Healthcare Technologies,
Waukesha, WI), with velocity encoding values of 25,
50, 75, 100, 125 and 150 cms~'. Velocity encoding
values of 150 and 125cms~ ' were chosen to
avoid phase wrapping, since the peak blood velocity
was V,=120 cm s~ L As V,,. decreased, the phase was
increasingly wrapped (figure 2). Details of the PC-MRI
acquisitions and preprocessing can be found in appen-
dix A. Although maximum-likelihood filters can be
highly effective at reducing the number of noise-
induced singular points in techniques such as speckle
interferometry where there are strong inter-pixel
variations in the signal magnitude (Huntley 1997),
this is not the case in PC-MRI. The resulting loss of
spatial resolution can have the counter-productive
effect of increasing the size of the larger loops. No
smoothing filter was, therefore, used in the data
analysis described here.

2.2. Three-dimensional phase unwrapping
algorithm

As explained in §1, the three-dimensional phase
unwrapping algorithm is an extension to three dimen-
sions of a two-dimensional version in which branch cut
lines are set between pairs of phase singularity points of
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Figure 2. Wrapped phase maps obtained for the same point in the cardiac cycle, with velocity encoding values of (a) 125, (b) 75
and (¢) 25 cm s~ . The ascending (Asc) and descending (Desc) aorta are identified in (a).

opposing signs. The example shown in figure 1 was
somewhat over-simplistic in that it contained only a
single pair of singularities. When more than one pair is
present in the image, a major problem arises: which
positive singularity should be joined to each of the
negative singularities? In two dimensions, it is not
possible to answer this question unambiguously, and it
is necessary to use statistical arguments. Buckland
et al. (1995), for example, showed that under certain
circumstances the maximum-likelihood pairing is that
which minimizes the sum of the squares of the cut
lengths, and an efficient algorithm was presented to
achieve this.

In three dimensions, additional information is
provided by the fact that singular points can now be
calculated around 2 X 2 squares oriented normal to each
of three different perpendicular directions. Huntley
(2001) showed that under sufficiently low singularity
densities, the singular points identified in this way must
link up to form continuous PSLs. The presence of
+1/—1 singularity pairs or ‘dipoles’ in two dimensions
may then be interpreted as the intersection of a loop in
three dimensions with the two-dimensional surface (see
figure 3). The two-dimensional problem of how to pair
the singular points does not arise in three dimensions,
since the points are unambiguously linked by the loop.
The placement of branch cut surfaces across all loops in
the phase volume results in a path-independent
solution. In appendix B, we relax the low-singularity-
density requirement, and prove for the first time that
all singular points must link up to form continuous
loops, no matter how high the singularity density. This
is an important result when dealing with the lowest V.,
phase volumes. Despite the additional information
compared to the two-dimensional case, ambiguities
still arise due to the problem of knot points (elemental
2 X2 X2 voxel cubes into which two loops enter and out
of which two loops leave). The ambiguity arises when
sorting the singularities into loops, because different
loop configurations are possible. In these cases, a
recursive tree structure is used to find the set of loops
with shortest lengths (Marklund et al. 2005).

Loops that end on the phase volume boundary,
called partial loops, are closed by connecting their
ends with artificial singularities added along the
phase volume boundary. PSLs that extend along one
of the axes but whose top and bottom parts are not

J. R. Soc. Interface (2006)

included in the phase volume, as shown in figure 4a,
do not normally arise in phase volumes with three
spatial axes, but can occur in datasets with two
spatial and one temporal dimension. In these cases it
is not correct to connect the ends of each vertical
loop segment by adding artificial singularities along
the boundary (figure 4b). Instead, the two portions
should be joined together. To achieve this, the
vertical partial loops that end on the first and last
slices are identified. The Hungarian algorithm
(Buckland et al. 1995) is used to pair loop segments
that run in opposite directions, using a cost function
equal to the sum of the distances between the ends
of the two loop segments on the first and last slices.
This type of loop occurred in regions of high noise
and was not common; fewer than 10 cases were
found in the data presented here. After all loops were
identified and closed, the branch surface for each was
set by shrinking the loop towards its geometric
centre. Once all the flags indicating the branch
surface locations had been set, the unwrapping was
carried out with a flood fill algorithm. This algorithm
is robust in the sense that the presence of branch
surfaces on the PSLs makes the results independent
of the unwrapping path. If a phase volume contains
PSLs and the corresponding branch surfaces are not
placed, the unwrapped phase volume will have errors
and it will not be possible to extract meaningful
information from it. Robustness of the algorithm
against MRI artefacts, motion, or low signal-to-noise
ratio, were not evaluated, as these effects can
generally be corrected for during the acquisition
process. It is worth noting that this algorithm is fully
automatic and does not require user interaction nor
optimization of any parameters.

The data was processed on a Sun Blade 100
workstation, with a 500 MHz UltraSPARC Ile pro-
cessor and 1 GB RAM. The time taken for the three-
dimensional phase unwrapping algorithm to unwrap
each phase volume of 256 X 256 X 20 voxels, masked by
applying a threshold on the corresponding magnitude
volume, varied between 15 and 60 s, being higher for
the lowest velocity encoding value where more singu-
larities were present. The routine that sorts the
singularities into loops is currently the most time-
consuming step, but this could be improved by using
more efficient sorting methods.
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L

Figure 3. Dipole pair of singular points occurs on a two-
dimensional surface intersected by a phase singularity loop.
(Reprinted with permission from Huntley (2001)).

2.3. Temporal unwrapping algorithm

Unwrapping the three-dimensional phase data along the
time axis was carried out by the following steps. The
input to the algorithm was a set of two-dimensional
wrapped phase maps, ¢.(z, y, 1), where (z, y) refers
to the pixel location and ¢ represents non-dimensional
time (¢=0,1, ..., s). Subscripts ‘w” and ‘u’ will be used to
denote wrapped and unwrapped phases, respectively.

The phase change at a given pixel between times
1 and jis given by

A¢(i,5) = ¢(1) —d(j),
where the pixel coordinates have been dropped for
reasons of clarity. This phase change is wrapped onto
the range (—, 7) by the unwrapping operator U:

Ay (i,5) = U{A¢(i, ), 0}.
U{¢1, ¢} subtracts an integral multiple of 27 from
¢1 such that ¢, —¢- lies in the range —m to +m:
$1—¢
U{¢r,ds} = ¢ —2m NINT [% ,

(2.1)

(2.2)

(2.3)

where NINT][...] denotes rounding to the nearest
integer. The term unwrapping operator is used because,
although in this special case (¢=0) it results in
wrapped phases, in general it is used to carry out the
unwrapping operations required in §3.

The total unwrapped phase change at the time of the
tth phase map measurement can then be calculated by
simply summing the wrapped phase differences:

d’u(t) = ZA¢W’(t/7 t/_l)a

t'=1

where ¢(0) is defined to be equal to 0.

(2.4)

2.4. ‘Temporal’ unwrapping algorithm along
velocity encoding axis

The temporal phase unwrapping method can also be
applied with velocity encoding instead of time as the
unwrapping direction. This approach makes use of four
dimensions: z, y, ¢ and a parameter g= Vi5a*/ V.,
where Vipe* is the maximum V. value used. V3™ is

J. R. Soc. Interface (2006)
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Figure 4. (a) A single loop that appears as two distinct
segments within the phase volume. Each segment ends on the
first and last slices of the volume. The shaded area represents
the correct branch surface. (b) Each segment is closed by
joining its ends with artificial singularities added along the
phase volume boundary thereby setting the wrong branch
surface.

chosen to be equal to or slightly greater than the
maximum blood velocity so that no phase wraps occur
in the g=1 phase volume. The method makes use of the
fact that the unwrapped phase at any given (z, y, )
voxel is by equation (1.1) inversely proportional to
Vene- The phase at that voxel is unwrapped indepen-
dently of the rest of the voxels. The method, therefore,
offers a significant benefit over the other two techniques
in that it does not depend on an adequate sampling rate
along any of the spatial or temporal axes.

In order to ensure sufficient sampling along the g
dimension one should choose the V. values such that ¢
forms the linear sequence g=1,2,3, ..., s (Huntley &
Saldner 1997a). Such an approach involves an increase
in acquisition time over the previous unwrapping
methods by a factor s which is generally undesirable.
However, the fact that the expected value of the
unwrapped phase scales with ¢ allows one to under-
sample along the g-axis. Two different strategies—
originally proposed for the analysis of data from an
optical shape measurement system (Huntley & Saldner
1997a)—are compared in this paper. In the first two
values, g=1 and g= s are used. In the second, a growing
exponential sequence ¢g=1,2,4,8 (i.e. s=8) is used
which requires four velocity encoding values.

In the first case, the volume with lower V. (g=s) is
unwrapped with respect to the higher V... volume
(g=1), scaled by the ratio s:

bu(s) = U{dw(s), sdw (1)},

where the spatial and temporal indices have been
dropped for reasons of clarity. The 150 cms
volume was used to unwrap the lowest V. volume of
25 cm s~ ' This approach was also used in Lee et al.
(1995), Herment et al. (2000) and Xiang (2001). Xiang
(2001) showed that only three acquisitions were needed
by taking the reference volume only once.

For the second approach, a growing exponential
sequence of VgL wvalues of 0.005, 0.01, 0.02 and
0.04scm™ ' (i.e. velocity encoding values equal
to 200, 100, 50 and 25 cm s~ !, corresponding to g=1,
2,4, 8) was used to unwrap each voxel. The factor of 2
increase in sensitivity between each acquisition is not
mandatory, but was found by Huntley & Saldner
(19974a) to be close to optimal. A smaller ratio, for
example, reduces the risk of an unwrapping failure

(2.5)
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Figure 5. Forward exponential implementation of the

‘temporal’ phase unwrapping algorithm along the velocity-
encoding axis in which a given (z, y, t) voxel is unwrapped.

between any two steps, but the larger number of steps
required can then result in an overall higher risk of an
error in the final unwrapped phase. Since the volume
with V,,.=200 cm s~ ' had not been acquired, it was
simulated by re-scaling the 150 cm s~ * phase values by
a factor 150/200. With these four points, the unwrap-
ping proceeds as follows. The first wrapped phase value
in the exponential sequence is used to unwrap the phase
difference between the first and second values. In turn,
this unwrapped phase difference is used to unwrap the
difference between the second and third points in the
sequence, which is finally used to unwrap the difference
between the third and fourth points.

Expressed mathematically, the wrapped increment
Ady(2,1) is unwrapped using the phase value ¢, (1), as
follows:

Ap,(2,1) = U{A¢y(2,1), ¢y (1)},
where ¢ (1) is not wrapped and, therefore, equal to

¢u(1).
Ap,(2,0) is calculated as

(2.6)

A$,(2,0) = Agy(2,1) + ¢y (1). (2.7)
A¢,(2,0) can now be used to unwrap A¢dy(4,2):
Ap,(42) = U{Ldy(4,2),A0,(2,0)},  (28)
from which A¢,(4,0) is calculated as:
Ad(4,0) = Ap,(4,2) + Ap,(2,0). (2.9)

This process is repeated using the phase values ¢(g)
(9g=1,24,8, ..., s). Equations (2.8) and (2.9) can be
rewritten for the general case:

Ap,(29,9) = U{Ady(29,9), Ady(9,0)},

A¢11(2g’0) = A¢11(2g7g) + A¢ll(g’0)'

The method is illustrated schematically in figure 5.

As pointed out by Huntley & Saldner (1997b), the
phase error can be further reduced by least-squares
fitting a line to the unwrapped phase values of the
exponential sequence and re-estimating the value of the
last point in the sequence from the best-fit gradient.
The fitting is done along the g dimension and, therefore,
involves no reduction in spatial resolution.

(2.10)

(2.11)

J. R. Soc. Interface (2006)
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Figure 6. Unwrapping success rates for the two velocity
encoding methods using two Ve, values (25 and 200 cm s~ ')
(dotted line) and an exponential sequence of four V. values
(from 200 to 25 cm s~ 1) (full line), as a function of phase noise
for the case v=0.

Unwrapping success rates for the two methods are
derived in appendix C. Comparison of the success rates
shows that using an exponential sequence of four values
results in improved unwrapping success rate in the
presence of noise when compared to using only two
velocity encoding values. This is illustrated in figure 6.
The reason for this result is that in the latter method
when the lower sensitivity data is scaled to perform the
unwrapping, the noise is also amplified, whereas the
exponential method has no noise amplification.

3. RESULTS

The four wrapped phase volumes ( Ve, =100, 75, 50 and
25 cm sfl) were unwrapped using the methods
described in §2.

3.1. Three-dimensional spatial unwrapping

The three-dimensional wrapped phase volumes with
Ve values of 100, 75 and 50 cm s~ were successfully
unwrapped by the three-dimensional noise-immune
phase unwrapping algorithm (figure 7). Application to
the V=25 cm s~ ! dataset resulted in some unwrap-
ping errors (figure 7), which are related to under-
sampling of the data and to the difficulty of setting up
proper branch surfaces in complex loops (see §4). The
PSLs that appear in the same sub-volume for three
velocity encoding values are shown in figure 8. It is clear
that the number and length of the PSLs increases as the
value of V. decreases. Also noticeable is the presence
of horizontal PSLs in the lower V. volumes.

3.2. Temporal unwrapping

The volumes with V,,,=100 and 75cms” ' were
successfully unwrapped with the temporal unwrapping
method, and the results were similar to those obtained
with the three-dimensional spatial unwrapping algor-
ithm (figure 7). However, the volumes with V. values
of 50 and 25 cm s~ * could not be correctly unwrapped
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Figure 7. Frames corresponding to the highest blood velocity in the volumes obtained with V.. values of 100, 75, 50 and
25 cm s L (a) Wrapped phase. (b) Unwrapped phase with the three-dimensional noise immune phase unwrapping algorithm.
(¢) Unwrapped phase with the temporal phase unwrapping algorithm.

with this method due to temporal undersampling
(figure 7), as will be explained in more detail in §4.

3.3. Velocity encoding unwrapping

The volume with V., value of 25 cm s~ !, which could
not be unwrapped with the temporal or three-dimen-
sional spatial unwrapping methods, was successfully
unwrapped with the velocity encoding unwrapping
approach using two V.. values (figure 9a) and an
exponential sequence of four V., values without
(figure 9b) and with least-squares fitting along the
velocity encoding direction (figure 9c).

4. DISCUSSION

The advantage of phase contrast images obtained with
low velocity encoding is the improved velocity-to-noise
ratio. This can be appreciated in the velocity surface
inside the ascending aorta obtained with V,,.=
150cms™ ! (figure 10a) and Vi,=25cms !
(figure 10b). Small velocity changes across the vessel,
which are masked by the noise in figure 10a, become

J. R. Soc. Interface (2006)

apparent in figure 10b. This improvement is quantified
in figure 11 by calculating the root mean square (r.m.s.)
velocity fluctuations across the ascending aorta at each
Vene value at two points in the cardiac cycle, one where
the velocity field is approximately zero and another
where the mean velocity was —87 cm s~ '. A factor of
approximately six times improvement (5.9 for the
almost zero velocity field, 6.7 for the high velocity
field) is obtained at the lowest V.. compared to the
highest of 150 cm s~ !, and a factor of approximately
five times improvement (4.6 for the almost zero velocity
field, 4.7 for the high velocity field) is obtained at the
lowest V,,. compared to the 125 cm s~ ' volume which
is the lowest V. volume without aliasing. These values
are in accordance with the theoretical linear relation-
ship between velocity-to-noise ratio and V. derived by
Lee et al. (1995). The fact that the r.m.s. values
decreases with decreasing V.. can be attributed to the
noise rather than the signal dominating the r.m.s.
calculations.

The wall shear rate measurement involves differen-
tiating the velocity field, a numerical procedure which
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Figure 8. Phase singularity loops in a sub-volume corresponding to the ascending aorta, when the velocity encoding is (a) 75,
(b) 50 and (¢) 25 cms !

cmst

Figure 9. Frame corresponding to the highest blood velocity in the volume obtained with V=25 cms™*. (@) Unwrapped phase
with the velocity encoding method using only two velocity encoding values. (b) Unwrapped phase with the velocity encoding
unwrapping method with an exponential sequence of four velocity encoding values. (¢) Unwrapped phase with the velocity
encoding unwrapping method with an exponential sequence of four velocity encoding values plus least-squares fitting.

Figure 10. Velocity distribution inside the ascending aorta during diastole obtained with encoding velocities equal to (a) 150 and

(b) 25 cms™

amplifies noise and which would, therefore, be expected
to result in better quality data through the use of low
values of V.. This is indeed the case, as illustrated in
figure 12a,b. These show the magnitude of the gradient
vector in the radial direction with respect to the centre
of the vessel. The radial derivative was calculated from
the local gradients in the z- and y-directions obtained
using a kernel of size equal to 3 X3 pixels. The higher
radial derivative values define the vessel’s wall more
sharply and with a smoother edge when V. of 50 cm s~ !
(figure 12b) is used compared to the results obtained
with Vi, of 150 cm s~ ' (figure 12a). There are of course
several other important issues that may affect the
calculation of wall shear rate, such as partial volume
effects, determination of vessel wall position, voxel size,
intravoxel dephasing and blood turbulence. Although a
discussion of these phenomena lies beyond the scope of
the current paper, it is worth pointing out that the
resulting errors will become increasingly important in
relative terms as V., is reduced.

J. R. Soc. Interface (2006)

!, The velocity distributions in (a) and (b) were obtained from the wrapped phase volumes.

By contrast with the wall shear stress calculations,
measurement of flow rate involves integrating the
velocity field across the vessel, a procedure that
suppresses the noise. Flow versus time graphs obtained
from the studies with different encoding velocities are,
therefore, seen to be comparable (figure 13).

The three unwrapping methods used gave compar-
able results for those sequences unwrapped success-
fully, with r.m.s. values of the difference being below
1 cm s~ 'in the regions of the ascending and descending
aorta. The temporal and spatial unwrapping methods
can fail to successfully unwrap a volume when there is
undersampling of the data, i.e. when the velocity
encoding parameter is below a threshold value.
Temporal undersampling is determined by the peak
blood acceleration a,. The magnitude of the velocity
change between successive frames must be less than
Vene to avoid undersampling, so the Nyquist condition
reads |a,|-At< Vi, where At is the inter-slice
sample time. Similarly, spatial undersampling depends


http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on September 17, 2014

Advanced higher-dimensional phase unwrapping M. F. Salfity and others 423

20t o —87cmst o
x —2cmst

—~~ 15'
£
KX o
v 10} x
g x °

05} °

®
0= 20 40 60 80 100 120 140 160

Vere (cm s

Figure 11. R.m.s. velocity fluctuations across the ascending
aorta for different V., values at two points in the cardiac
cycle: one where the mean velocity is approximately zero
(—=2cms™Y); and another where the mean velocity is
—87cms~ ', The r.m.s. values for the V,.=25cms !
volume were obtained from the unwrapped phase using the
velocity encoding unwrapping with a forward exponential

sequence method.
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Figure 12. Wall shear strain rate inside the ascending aorta
calculated from images with encoding velocities equal to (a)
Vene=150 cm s+ and (0) Vene=>50 cm s~ ! and peak velocity
of 104 cms™? (phase unwrapped with three-dimensional
spatial unwrapping algorithm).

on the peak velocity gradients, expected at the walls of
the aortas, and the Nyquist condition implies that
|0v/0z|, Az < Vi and [dv/dyl,-Ay < Vi, where Az
and Ay are the inter-pixel distances in the z- and

J. R. Soc. Interface (2006)
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Figure 13. Flow versus time graphs of the descending aorta
obtained from images with different encoding velocities. The
velocity maps in images with V,,.=100, 75 and 50 cm st
were obtained from the volumes unwrapped with the three-
dimensional spatial unwrapping algorithm, while the velocity
map for Ve,.=25cms™ ' was obtained by using the four-
dimensional unwrapping approach.
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Figure 14. Velocity increments between consecutive frames
for pixels in ascending aorta region (V=150 cm sfl). The

maximum absolute velocity increment is 71 cm s~ .

y-directions, respectively, and subscript ‘p’ refers to the
peak value.

The magnitude of the peak velocity change between
successive frames was estimated from the V,,.=
150 cm s~ ' phase volume, which has no phase wraps
(see figure 14), as 7Tlcms ' (equivalent to a peak
acceleration of 17.8 ms™?). This value is consistent
with the results obtained for the temporal unwrapping
method, which unwraps successfully for V... values
down to 75 cm s~ ', but fails for velocity encoding values
of 50 and 25 cms ™. When there is temporal under-
sampling, the PSLs tend to have more singularities
oriented in directions perpendicular to the time axis
(figure 8b,c). Figure 15a shows one large and several
small horizontal loops due to temporal undersampling.
Temporal unwrapping fails here because the unwrap-
ping path crosses regions of more than 27 phase
difference when traversing the horizontally oriented
loops, causing unwrapping errors (figure 15b).
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Figure 15. (a) Wrapped phase (Vane="50 cm s~ ') for four consecutive frames in the region of the ascending aorta, and the phase
singularity loops that arise due to temporal and spatial undersampling. (b) Temporal unwrapping failure due to temporal
undersampling (horizontal loops). (¢) Three-dimensional spatial unwrapping is successful after placing branch surfaces in

the phase singularity loops.

Figure 16. A C-shaped loop is ambiguous because it can support two different surfaces, (a) and (b), which block different
unwrapping paths. If the incorrect surface is used, localized unwrapping errors result.

The three-dimensional spatial unwrapping method
successfully unwraps this volume because branch
surfaces are placed to prevent the unwrapping path
from traversing the loop (figure 15¢). Even if there is no
temporal undersampling, when spatial undersampling
is severe, the loops that are formed, though mainly
oriented vertically, can have some horizontal com-
ponents, which again will cause temporal unwrapping
errors. It should be pointed out that since the phase
variation with time is cyclic, simple error detection on
the temporally unwrapped data could be carried out by
checking that the phase offset between first and last
frames lies in the range [—m,m).

In the three-dimensional spatial unwrapping
method, spatial and/or temporal undersampling will
not cause any unwrapping errors as long as the branch
surfaces are properly set, as in the case of figure 15¢.
However, ambiguous situations may arise, where more
than one surface can be placed in the loop, blocking
different unwrapping paths (figure 16). In this example,
both surfaces have the same area, and from the loop
geometry alone there is no reason to prefer one branch
cut surface to the other. If the wrong surface is chosen,
localized unwrapping errors result. The present algor-
ithm unwraps successfully phase volumes with some
degree of undersampling, as in V=50 cms ', but
not with severe spatial undersampling as in V.=
25 cm s~ ', where the loops become larger and more
convoluted. Figure 17a shows one of the complex loops
that appear in the sub-volume of the aorta in the V.=
25 cm s~ ' study. The unwrapped phase in this region
presents errors because the wrong surface was set up for
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this particular loop (figure 17b) and for a second
similarly complex loop in the same area.

The velocity encoding unwrapping method success-
fully unwrapped the volume with V,.=25cms *,
which could not be unwrapped by the other two
methods. The use of four velocity encoding values has
the disadvantage of requiring three extra acquisitions,
but produces results with improved velocity-to-noise
ratio (14% improvement) when compared to using only
two velocity encoding values which requires only one
extra acquisition (figure 18). The improvement is
greater (26%) when the least-squares fit is performed
on the exponential sequence. Another possibility to
make the method faster is to acquire only one reference
volume, as proposed by Lee et al. (1995). This would
increase acquisition time by a factor of 2.5 if four
velocity encoding values are used, or by 1.5 for the case
of two values. Despite such potential improvements,
the fact remains that the method involves some
sacrifice of temporal resolution.

5. CONCLUSIONS

CcINE phase contrast MRI obtained with velocity
encoding values smaller than the maximum blood
velocity results in wrapped phase volumes. Even
though the velocity-to-noise ratio increases as the
velocity encoding decreases, low V., values are
generally not used in order to avoid phase wrapping.
This limits the dynamic range of the images and results
in a lower velocity-to-noise ratio. This study compared
the performance of four different unwrapping strategies
on such phase volumes over a range of V. values.
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Figure 17. (a) Wrapped phase of six consecutive frames of the volume with V,,,=25 cm s

(b)

\ _-...g_? -

110 120 130
mm

~1in the region of the ascending aorta,

and a complex ambiguous loop due to undersampling. (b) Unwrapped phase with the three-dimensional noise immune phase
unwrapping algorithm. Unwrapping errors occur near the loop due to the incorrect selection of the two possible branch surfaces.

The simplest method based on unwrapping along the
time axis worked well, provided that no temporal
undersampling occurred. The theoretical criterion
based on the peak acceleration, |a,|-At< V., was
found to be consistent with the observed onset of failure
of this technique. A path-independent three-dimen-
sional algorithm based on identification of PSLs, and
modified to take account of loops traversing the entire
time axis of the volume, gives significantly better
performance in the presence of moderate amounts of
both spatial and temporal undersampling. A factor of
2.5X improvement in sensitivity was achieved
compared with the no-wrapping acquisitions. This
algorithm is, therefore, recommended as the best option
when only a single phase volume can be acquired.

Attempts to increase the sensitivity parameter s
(defined as the ratio between maximum and minimum
velocity encoding values) caused rapid increases in the
size and density of the PSLs, resulting in localized
unwrapping errors. The process of setting up branch
surfaces can become ambiguous as the loop size
increases. Although further research may improve the
performance of the algorithm on severely undersampled
data, it seems likely that the only reliable way to
increase s further is to increase the sampling rate along
both spatial axes by a corresponding amount. This will
result in a temporal resolution that scales with s*. To
prevent temporal undersampling, however, one requires
a temporal resolution scaling as 1/s, and it is the
disparity between these two scaling laws that sets a
practical limit on the maximum value of s that can be
achieved.

Two velocity encoding unwrapping approaches were
also studied: one using two velocity encoding values;
and a second using an exponential sequence of four

J. R. Soc. Interface (2006)
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Figure 18. R.m.s. velocity fluctuations inside the ascending
aorta at each temporal frame for the V,,.=25 cm s~ ! volume
unwrapped along the velocity encoding dimension using an
exponential sequence of four V. values with (a) and without
(b) least-squares fitting along the g-axis and (¢) two Ve
values.

velocity encoding values. The latter has the advantage
of increased unwrapping success rate compared to the
former, and produced results with increased velocity-to-
noise ratio, though it has the disadvantage of longer
acquisition time. However, the temporal resolution with
this approach scales as [loga(s)+1]—a much weaker
function of sthan for the three-dimensional algorithm—
and since neither temporal nor spatial undersampling
directly affects the unwrapping reliability, significantly
higher s values may ultimately be achievable. A factor
of five times improvement in velocity-to-noise ratio was
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demonstrated, and no global failure of the algorithm
was observed on any of the datasets studied. The
ultimate limit with this approach will come when the
phase gradient within a voxel becomes too high for
accurate phase measurements to be made.

Finally, while further tests need to be carried out to
evaluate the performance of the algorithms on a larger
number of datasets, we believe the results achieved so
far demonstrate considerable promise for a possible
eventual clinical implementation.
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APPENDIX A

This appendix presents detailed technical information
on how the PC-MRI data were obtained and
preprocessed.

A retrospectively gated, segmented CINE phase
contrast sequence using two views-per-segment (two
k-space lines were acquired per repetition time (TR) for
each velocity encoding) was used. Other imaging
parameters were: field-of-view 280X 280 mm; slice
thickness 5.0 mm; imaging matrix 256 X128 with 3.0
NEX; receiver bandwidth 31.3 kHz, flip angle 30°. The
TE/TR (TE: echo time) ranged from 3.4 to 4.2/6.8 to
7.6 ms, depending upon the velocity encoding. The
study was conducted in compliance with the regu-
lations of the local research ethics committee.

Twenty temporal phases were reconstructed with a
temporal resolution of approximately 40 ms. The
volumes were registered both spatially and temporally
as follows. The flow versus time curves of the different
volumes were compared to the flow versus time curve,
corresponding to the highest sensitivity volume. It was
necessary to shift the frames of the different volumes by
1-4 frames to correct for temporal misalignment. Each
magnitude volume was then spatially registered to the
highest sensitivity volume, using SPM’s (Statistical
Parametric Mapping, http://www.fil.ion.ucl.ac.uk/
spm/) coregistration tool, which uses a rigid model,
with mutual information as a cost function, and a third
degree spline as re-slice interpolation function. The
phase volumes were coregistered using the affine
transformation matrices obtained from the coregistered
magnitude volumes.

APPENDIX B

In this appendix, we demonstrate that PSLs cannot
terminate within the phase volume. It is more general
than the proof by Huntley (2001), in that it does not
rely on the assumption that singular points in two-
dimensional phase maps occur in closely spaced
singularity pairs or dipoles. It is, therefore, equally
applicable to situations in which global undersampling
occurs, which in the case of two-dimensional phase
maps can result in isolated singularities or ‘monopoles’.

Consider an elemental cube of 2X2X2 voxels (see
figure 19). The presence of a singularity s; on a given
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Figure 19. Unwrapping paths for calculation of the singularity
distribution on three adjacent faces of a cube element.

face i of the cube is detected by summing the phase
discontinuities that are crossed as one follows a closed
path along the four edges of the cube face. If we label the
four voxels on this face 1, ..., 4, ordered in the direction
given by the right-hand screw rule with the thumb
pointing along the outward normal, and with corre-

sponding phase values ¢1, ..., ¢4, then
§;p = dgy + A3y + Ay3 + Ay, (B1)
where
A, = NINT(‘“ ¢Z) (B 2)
2

s; can take the value +1, —1, or 0 (Bone 1991). Note
that the sign of s; is reversed if it is calculated with the
thumb pointing along the inward normal to the cube.

Now consider the sum of the singularities over the six
faces of the cube, S= Z?:l s;. For every contribution
A, to S from face i, there is a contribution 4, to S from
the face that shares the common edge between voxels k
and [. In figure 14, this is illustrated for three faces by
the opposing directions of the unwrapping arrows on
their adjacent edges. However, by definition (equation
(B 2)), 4= — 4y, and, therefore, S must be identically
equal to zero.

The fact that S'is zero means that a singularity s; on
a given face ¢ of the cube must be balanced by a
singularity of opposite sign s;= — s, on one of the other
five faces of the cube, denoted j. Face jis shared with a
neighbouring cube of 2 X2 X2 voxels, and as calculated
on this neighbour’s face (for which the outward normal
is in the opposite direction to face j on the first cube),
the singularity, therefore, takes the value s; from face i
of the first cube.

The argument can then be repeated as above for the
second cube, and then a third and so on, the process
terminating only when we reach either face i of the first
cube again, or the boundary of the phase volume. The
list of cubes built up in this way constitutes the path of
the PSL. Each cube in the list contains a face with a —1
singularity and a second face with a +1 singularity,
both measured in the outward normal direction. The
—1 singularity corresponds to a +1 singularity
measured in the inward normal direction and can be
thought of as the face through which the loop ‘enters’
the cube, whereas the + 1 singularity occurs on the face
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through which the loop ‘leaves’ the cube. The arrows
shown on the figures in this paper indicate the loop
direction as defined in this way.

APPENDIX C

This appendix derives expressions for unwrapping
success rates of the two one-dimensional phase unwrap-
ping strategies presented in §2.4.

C.1. Strategy one: two values g=1 and g=s
are used

An expression for the overall unwrapping success rate R
or probability of correct unwrapping of this method was
derived by Huntley & Saldner (1997a), by considering
that the unwrapping will be successful if the random
variable

X = 5¢u(1) _¢u(8)

falls in the range (—m,w]. The expected values of s¢,(1)
and ¢,(s) are identical, and if ¢,(1) and ¢,(s) are
Gaussian random variables with standard deviation o,
then X is also a Gaussian random variable with zero
mean and standard deviation equal to (s*+1)"?6.
Therefore, the overall success rate R is

(C1)

T
R=erf| ———|, Cc2
(m/2(52 + 1)) (©2)
where erf is the error function
erf(z) = — J e d (C3)
rf(z) = — U.
VT Jo

C.2. Strategy two: a growing exponential
sequence g=1,2,4,8 (i.e. s=8) is used

The overall unwrapping success rate R (Huntley &
Saldner 19974) can be derived by considering that the
unwrapping will only be successful if the random
variable

Y = A¢u(2gv g) _A‘pu(gao) = ¢u(29) _2¢u(g)

falls in the range (—m,n] for each of the unwrapping
steps after the first. Y is a Gaussian random variable
with mean equal to zero and standard deviation equal
to v/50, where ¢ is the standard deviation of the phase.
The overall success rate R is

() )

Pl
(C5)

where the first term on the right-hand side is a measure
of the probability of failure of the first unwrapping step
(Huntley & Saldner 19974a). From equation (C 5), it is
clear that the two requirements to obtain high success
rates are that the blood speed |v| < Vi5a¥, i.e. that the

(C4)
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phase volume with highest velocity encoding, is free
from wrapping, and that the noise level is low.
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