Transformations at the Heart of Connections and Creativity in STEAM

Carl Lee
University of Kentucky
www.ms.uky.edu/~lee/nctm2017/nctm2017.html

NCTM April 2017 Reflection Cove #6 — 3:30–4:30

Prelude

Pipedream (by Animusic)

https://www.youtube.com/watch?v=hyCIpKAIFyo

• An important central part of mathematics.

- An important central part of mathematics.
- Sometimes relegated in K-12 math to a corner of geometry.

- An important central part of mathematics.
- Sometimes relegated in K-12 math to a corner of geometry.
- Offer opportunities for strong connections to many concepts in math.

- An important central part of mathematics.
- Sometimes relegated in K-12 math to a corner of geometry.
- Offer opportunities for strong connections to many concepts in math.
- Play significant roles in science, technology, engineering, and the arts.

- An important central part of mathematics.
- Sometimes relegated in K-12 math to a corner of geometry.
- Offer opportunities for strong connections to many concepts in math.
- Play significant roles in science, technology, engineering, and the arts.
- Lie at the heart of design software, including such free software as GeoGebra, SketchUp, POV-Ray, and Blender.

Plan for Today

Offer "snapshots" of problems and applications involving transformations.

Plan for Today

Offer "snapshots" of problems and applications involving transformations.

It is hoped that this will serve as a source of ideas that can be used, adapted, modified, and extended in various ways.

Some Free Software

- GeoGebra www.geogebra.org
- SketchUp www.sketchup.com
- POV-Ray
 - PC www.povray.org
 - ► Mac megapov.inetart.net/povrayunofficial_mac
- Blender www.blender.org

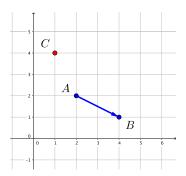
Rigid Motions

Rigid motions map the plane (or space) to itself without changing distances.

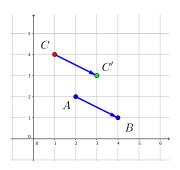
Translations

Translating a Point

Translate point C as indicated by vector \overrightarrow{AB} .

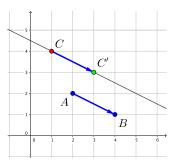


Translating a Point



$$C' = C + (B - A).$$

Lines

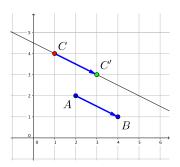


This connects to the parametric equation of a line P(t) = C + t(B - A).

In this example, P(t) = (1,4) + t(2,-1). t = 1 corresponds to the original translation.

NCTM April 2017Reflection Cove #6

Rectilinear Motion



This in turn connects to rectilinear motion — just vary t uniformly.

Make a slider for t in GeoGebra.

Type (1, 4) + t * (2, -1) in the input space.

Turn on animation.

See translatepoint4.ggb.

NCTM April 2017Reflection Cove #6

Rectilinear Motion

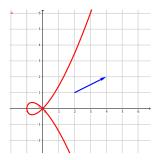
Animation software can make this look fancier. I used POV-Ray to create the images and Blender to make the movie. The key command is

$$\mathsf{sphere}\{<0,1,4>+\mathsf{clock}*<0,2,-1>,1\ \mathsf{texture}\{\mathsf{T}_{-}\mathsf{Ruby}_{-}\mathsf{Glass}\}\}.$$

(Note that we are looking directly at the x-axis towards the yz-plane.)

See translatesphere.mov.

What if you want to translate a curve with a given equation?



Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Every point (x, y) on the curve moves to a new point $(\overline{x}, \overline{y})$. We need to know the equation of the new curve expressed in terms of \overline{x} and \overline{y} .

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Every point (x, y) on the curve moves to a new point $(\overline{x}, \overline{y})$. We need to know the equation of the new curve expressed in terms of \overline{x} and \overline{y} .

But $\overline{x} = x + 2$ and $\overline{y} = y + 1$ by translation.

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Every point (x, y) on the curve moves to a new point $(\overline{x}, \overline{y})$. We need to know the equation of the new curve expressed in terms of \overline{x} and \overline{y} .

But $\overline{x} = x + 2$ and $\overline{y} = y + 1$ by translation.

So
$$x = \overline{x} - 2$$
 and $y = \overline{y} - 1$.

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Every point (x, y) on the curve moves to a new point $(\overline{x}, \overline{y})$. We need to know the equation of the new curve expressed in terms of \overline{x} and \overline{y} .

But $\overline{x} = x + 2$ and $\overline{y} = y + 1$ by translation.

So
$$x = \overline{x} - 2$$
 and $y = \overline{y} - 1$.

Substituting yields the new equation $(y-1)^2 = (x-2)^3 + (x-2)^2$.

Translate the curve with the equation $y^2 = x^3 + x^2$ by the vector (2,1).

Every point (x, y) on the curve moves to a new point $(\overline{x}, \overline{y})$. We need to know the equation of the new curve expressed in terms of \overline{x} and \overline{y} .

But $\overline{x} = x + 2$ and $\overline{y} = y + 1$ by translation.

So
$$x = \overline{x} - 2$$
 and $y = \overline{y} - 1$.

Substituting yields the new equation $(y-1)^2 = (x-2)^3 + (x-2)^2$.

This connects to and explains the familiar "shifting" formulas that are seen in algebra, including shifting graphs of functions and writing equations of circles not centered at the origin.

NCTM April 2017Reflection Cove #6 3:30 / 91

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin?

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

We want -4h - 12 to be zero, so h = -3.

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

We want -4h - 12 to be zero, so h = -3.

We also want $2h^2 + 12h + 23 + k = 0$ so k = -5.

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

We want -4h - 12 to be zero, so h = -3.

We also want $2h^2 + 12h + 23 + k = 0$ so k = -5.

Then $\overline{y} = 2\overline{x}^2$ is the equation of the translated parabola.

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

We want -4h - 12 to be zero, so h = -3.

We also want $2h^2 + 12h + 23 + k = 0$ so k = -5.

Then $\overline{y} = 2\overline{x}^2$ is the equation of the translated parabola.

So the equation of the original parabola is $y - 5 = 2(x - 3)^2$ which has vertex (3,5).

Consider the parabola given by the equation $y = 2x^2 - 12x + 23$. How can we translate it so that the vertex is at the origin? If the translation is given by $\overline{x} = x + h$ and $\overline{y} = y + k$, then we have

$$\overline{y} - k = 2(\overline{x} - h)^2 - 12(\overline{x} - h) + 23$$

or

$$\overline{y} = 2\overline{x}^2 + (-4h - 12)\overline{x} + (2h^2 + 12h + 23 + k).$$

We want -4h - 12 to be zero, so h = -3.

We also want $2h^2 + 12h + 23 + k = 0$ so k = -5.

Then $\overline{y} = 2\overline{x}^2$ is the equation of the translated parabola.

So the equation of the original parabola is $y - 5 = 2(x - 3)^2$ which has vertex (3, 5).

We are using translation to "complete the square."

NCTM April 2017Reflection Cove #6 — 3:30 / 91

Carl Lee (UK)

Starting pattern

Translate three times (images are in different colors to tell them apart)

One more large translation of everything

One more large translation of everything

This is the structure of the round "Row, Row, Row Your Boat" with four voices, twice through. (Translation in time.)

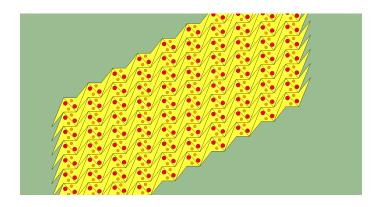
Using Translations to Make Patterns

One more large translation of everything

This is the structure of the round "Row, Row, Row Your Boat" with four voices, twice through. (Translation in time.)

What does translation in (the logarithm of the) pitch do?

Using Translations to Make Patterns



Tiling by quadrilaterals made with SketchUp. Adjacent quadrilateral is obtained by rotation about midpoint of shared edge. Then pairs of quadrilaterals are translated.

Translations in Time

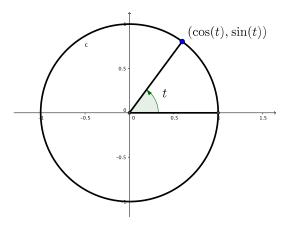
For another entertaining example, see the video of Kylie Minogue's "Come into my World,"

https://www.youtube.com/watch?v=63vqob-MljQ.

Rotations

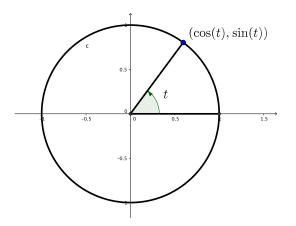
The Power of Trig

Consider a point on the unit circle



The Power of Trig

Consider a point on the unit circle



As t increases, the point rotates counterclockwise about the origin along the path of the circle.

The Power of Trig

Try this in GeoGebra.

Make a slider for t, selecting the "angle" option.

Type $(\cos(t), \sin(t))$ in the input space.

Turn on animation.

See unitcircle2.ggb.

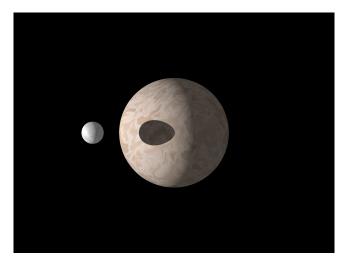
Simple Planetary Motion

Suppose a planet rotates counterclockwise around its axis three times while at the same time it revolves once counterclockwise around the sun. How many days do the inhabitants experience during the year?

See planet.ggb.

Simple Planetary Motion

A fancier planet and moon created with POV-Ray and Blender.



See rotatesphere.mov.

Motions with Logo "Turtle Graphics"

Logo is a language to construct drawn figures using motion commands for moving and turning, etc.

See https://turtleacademy.com and turtle.mov, an example from this website.

Add vectors in the usual way, placing them tail to head.

See vectorsum.ggb.

This is essentially translation.

Add vectors in the usual way, placing them tail to head.

See vectorsum.ggb.

This is essentially translation.

Multiply vectors by multiplying their lengths and adding their angles. See vectorproduct.ggb.

This is rotation and dilation.

What happens when the two vectors are on the x-axis?

What happens when the two vectors are on the x-axis?

They behave like ordinary addition and multiplication of real numbers.

What happens when the two vectors are on the x-axis?

They behave like ordinary addition and multiplication of real numbers.

Find a vector A such that $A^2 = -1$. Find another.

What happens when the two vectors are on the x-axis?

They behave like ordinary addition and multiplication of real numbers.

Find a vector A such that $A^2 = -1$. Find another.

Find a vector A such that $A^3 = 1$. Find another.

Complex Numbers

We have just seen the geometric model for the complex numbers. "Under the hood" are the trig angle sum identities, which lead directly to the important rotation formula:

$$\left[\begin{array}{c} \overline{x} \\ \overline{y} \end{array}\right] = \left[\begin{array}{cc} \cos t & -\sin t \\ \sin t & \cos t \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right].$$

to rotate a point (x, y) counterclockwise about the origin by an angle t.

Problem from my precalculus high school course:

What is the resulting equation if the parabola described by $y=x^2$ is rotated counterclockwise about the origin by the angle t having $\sin t = \frac{7}{25}$ and $\cos t = \frac{24}{25}$?

Problem from my precalculus high school course:

What is the resulting equation if the parabola described by $y=x^2$ is rotated counterclockwise about the origin by the angle t having $\sin t = \frac{7}{25}$ and $\cos t = \frac{24}{25}$?

We use the rotation formula:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right] \left[\begin{array}{c} \overline{x} \\ \overline{y} \end{array}\right].$$

Problem from my precalculus high school course:

What is the resulting equation if the parabola described by $y=x^2$ is rotated counterclockwise about the origin by the angle t having $\sin t = \frac{7}{25}$ and $\cos t = \frac{24}{25}$?

We use the rotation formula:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right] \left[\begin{array}{c} \overline{x} \\ \overline{y} \end{array}\right].$$

Substituting, we have

$$-\frac{7}{25}\overline{x} + \frac{24}{25}\overline{y} = \left(\frac{24}{25}\overline{x} + \frac{7}{25}\overline{y}\right)^2$$

which simplifies to

$$576\overline{x}^2 + 336\overline{xy} + 49\overline{y}^2 + 175\overline{x} - 600\overline{y} = 0.$$

NCTM April 2017Reflection Cove #6 — 3:30

Another problem from the same course: Analyze the conic given by the equation

$$73x^2 - 72xy + 52y^2 - 410x + 120y + 525 = 0.$$

Another problem from the same course: Analyze the conic given by the equation

$$73x^2 - 72xy + 52y^2 - 410x + 120y + 525 = 0.$$

We wish to apply a rotation by angle t that eliminates the xy term. We use the rotation formulas. Let's abbreviate $s = \sin t$ and $c = \cos t$.

$$\begin{aligned}
 x &= c\overline{x} + s\overline{y}, \\
 y &= -s\overline{x} + c\overline{y}.
 \end{aligned}$$

After substitution and simplification we find that the coefficient of \overline{xy} is

$$42sc - 72(c^2 - s^2)$$
.

We need an angle t so that this expression equals 0. Let T=2t, $S=\sin T$, and $C=\cos T$. Then S=2sc and $C=c^2-s^2$ by the Double Angle Formulas. So we want an angle T with

$$21S - 72C = 0$$
.

We need an angle t so that this expression equals 0. Let T=2t, $S=\sin T$, and $C=\cos T$. Then S=2sc and $C=c^2-s^2$ by the Double Angle Formulas. So we want an angle T with

$$21S - 72C = 0$$
.

But this means $\tan T = \frac{S}{C} = \frac{24}{7}$. From this (and the Pythagorean Theorem) we calculate $S = \frac{24}{25}$ and $C = \frac{7}{25}$.

Now we use the Half Angle Formulas to find s and c:

$$s=\sqrt{\frac{1-C}{2}}=\frac{3}{5},$$

$$c=\sqrt{\frac{1+C}{2}}=\frac{4}{5}.$$

Using these values of c and s, the rotated conic has equation

$$100\overline{x}^2 - 400\overline{x} + 25\overline{y}^2 - 150\overline{y} + 525 = 0.$$

Complete the two squares to get

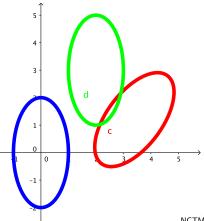
$$100(\overline{x}^2 - 4\overline{x} + 4) + 25(\overline{y}^2 - 6\overline{y} + 9) = 100,$$

or

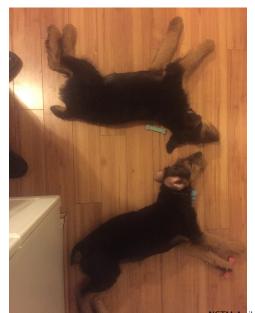
$$(\overline{x}-2)^2+\frac{(\overline{y}-3)^2}{4}=1.$$

This is an ellipse with center (2,3).

So we have deduced that the original ellipse can be obtained from the ellipse $\overline{x}^2 + \frac{\overline{y}^2}{4} = 1$ by first translating it by (2,3) and then rotating it clockwise by the angle t with $\sin t = \frac{3}{5}$ and $\cos t = \frac{4}{5}$.



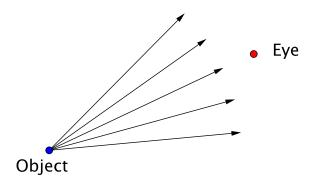
Reflections



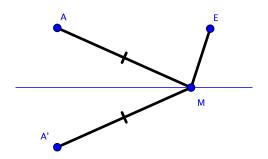
Why does the apparent location of a reflected object match the defined location of the mathematical reflection of that object?

Why does the apparent location of a reflected object match the defined location of the mathematical reflection of that object?

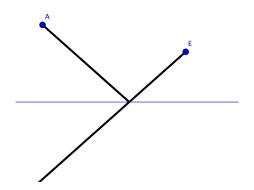
First Key Idea: The brain perceives the location of an object to be at the confluence of rays of light coming from that location.



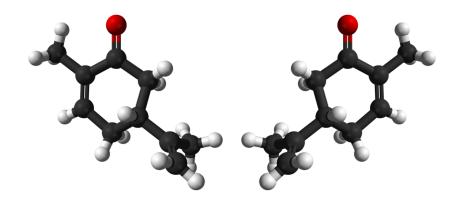
Second Key Idea: Light travels the path of least time, and this implies the angle of incidence equals the angle of reflection. See vision2.ggb—move the point M.



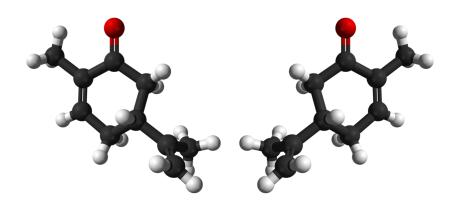
Now move the point E in vision3.ggb to see that the reflected rays reaching E appear to trace back and converge on the mathematical reflection of A in the mirror.



Reflections in Chemistry



Reflections in Chemistry



Spearmint and Caraway (R-carvone and S-carvone)
Reflecting a compound may dramatically change its properties.

Anamorphic Art

Look at this distorted image as it is reflected in a mirrored cylinder.

Anamorphic Art

Anamorphic Art

Anamorphic Art

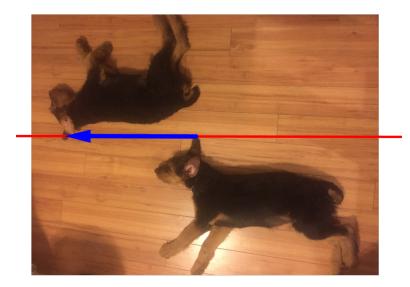
See ${\tt anamorph2.mov}, \ {\tt made} \ {\tt with} \ {\tt POV-Ray} \ {\tt and} \ {\tt Blender}.$

For Later Discussion?

Why does a mirror reverse an image left and right, but not up and down?

Glide Reflections

Glide Reflections



Classification

Every rigid motion of the plane is one of the following: a translation, a rotation, a reflection, or a glide reflection.

Classification

Every rigid motion of the plane is one of the following: a translation, a rotation, a reflection, or a glide reflection.

Every rigid motion of the plane is a combination of at most three reflections.

Classification

Every rigid motion of the plane is one of the following: a translation, a rotation, a reflection, or a glide reflection.

Every rigid motion of the plane is a combination of at most three reflections.

Throw two copies of the following shape on the floor and identify the rigid motion mapping one to the other.

Questions to Ask with Technology

For each of the following files, precisely determine what the rigid motion is. (Move the point A.)

iso50.ggb

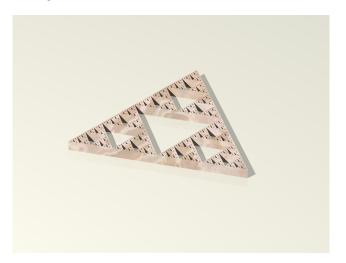
iso60.ggb

iso70.ggb

iso80.ggb

Dilations

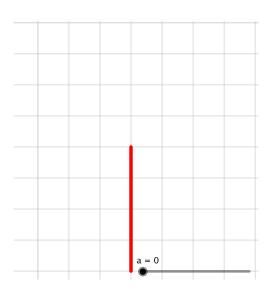
Sierpinski Triangle

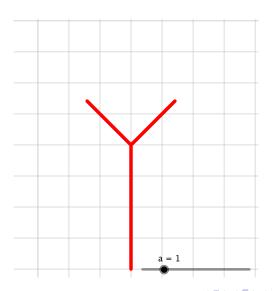


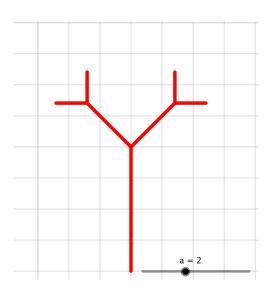
See sierpinski2.mov, made with POV-Ray.

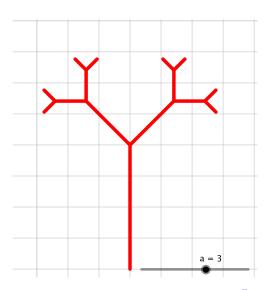
Start with a simple element; dilate, replicate, reposition, to make a new figure; repeat with the new figure.

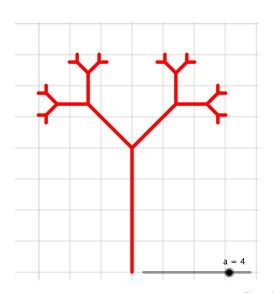
See the file fractal3.ggb.







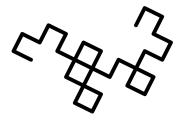


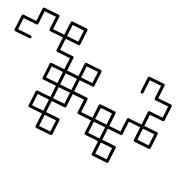


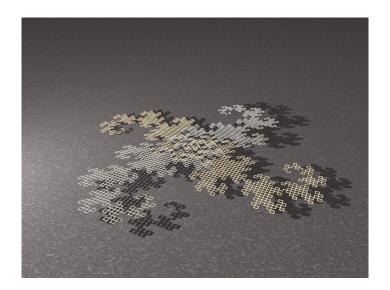
A fancier version made with POV-Ray.

A fractal made with rotations.

Fold a long strip of paper in half from, say, right to left. Then fold it again from right to left. And again. And again. . . . Then unfold the entire strip until each crease forms a right angle.







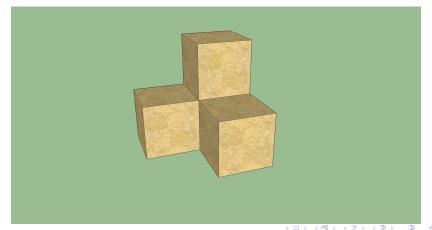
Classifying Molecules

Molecules can be classified according to their symmetries—what sets of 3D rigid motions leave the molecules unchanged in appearance. See, for example,

https://en.wikipedia.org/wiki/Molecular_symmetry.

Classifying Molecules

Make your own "molecules" from cubes and study their rotational and reflectional symmetries. How many molecules can you make with different sets of symmetries? How many ways can you draw a given molecule on isometric dot paper?



Square Dancing

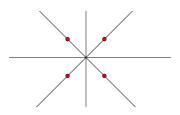
What transformations do the women represent? What transformations do the men represent?

ladies2.mov ladies4.mov

Animations from http://www.squaredancecd.com/sdance.htm.

Square Dancing

You can do simpler versions with four individuals in your class.



The dance "calls" could be

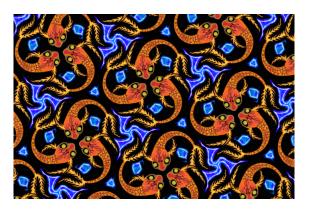
- Rotate 90, 180, or 270 degrees clockwise.
- Reflect across the x-axis, y-axis, the line y = x, or the line y = -x.

(You can think of more creative names!)

Consider the net result of a sequence of moves. Find a single move that can "undo" a sequence of moves.

Art — iOrnament

Powerful iPad app using transformations and symmetry systems to create beautiful images.



https://itunes.apple.com/us/app/ iornament-draw-creative-geometry/id534529876?mt=8

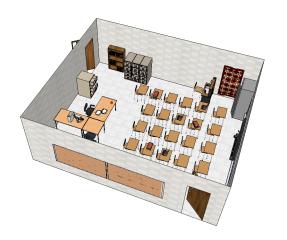
Three-D Design — Jessie Clark Middle School

Programs like SketchUp and Blender are fundamentally based on transformations—some very sophisticated and powerful. Here is an example from an eighth grader at Jessie Clark Middle School.

Here is the SketchUp file: room1.skp.

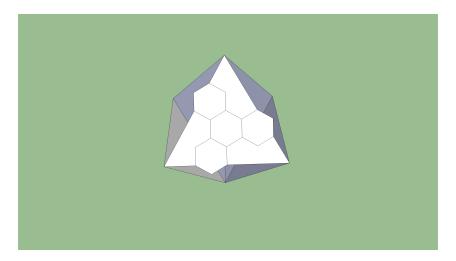
See also a summary of SketchUp and transformations, SketchUp.pdf.

Three-D Design — Jessie Clark Middle School



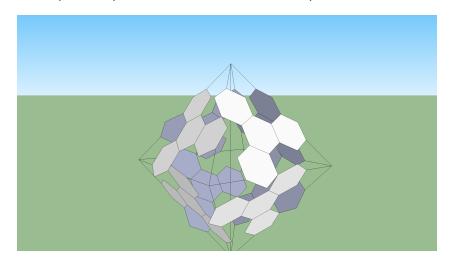
Three-D Design and Printing

An example of a puzzle constructed in SketchUp



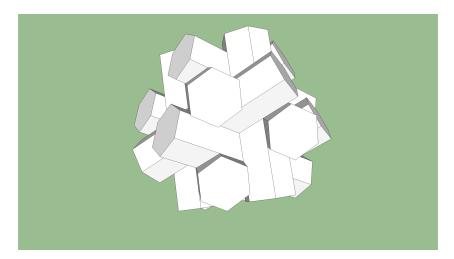
Three-D Design and Printing

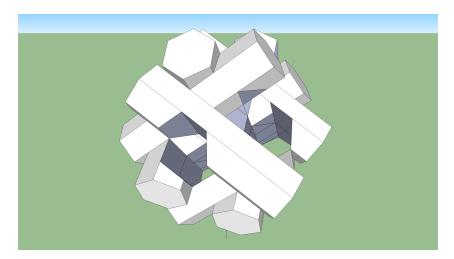
An example of a puzzle constructed in SketchUp

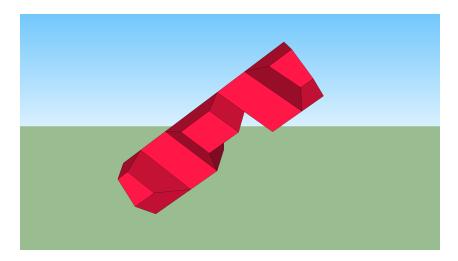


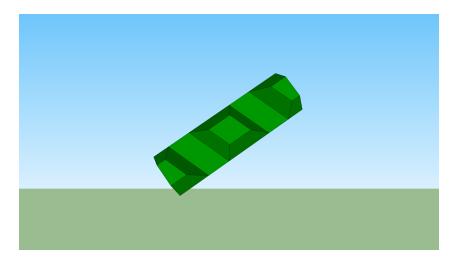
Three-D Design and Printing

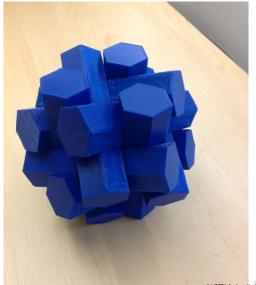
An example of a puzzle constructed in SketchUp







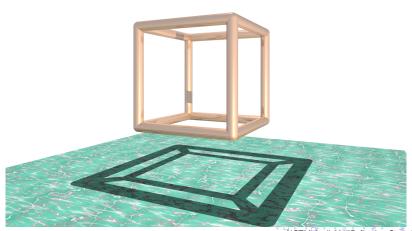




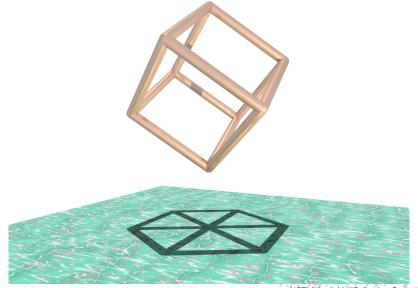
Projections

Omnipresent—every time we look at a three-dimensional object as displayed on a two-dimensional surface or screen

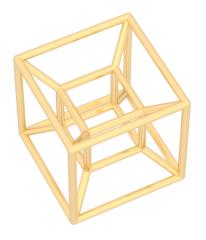
Projection of a Three-Dimensional Cube



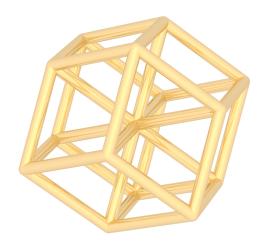
Projection of a Three-Dimensional Cube



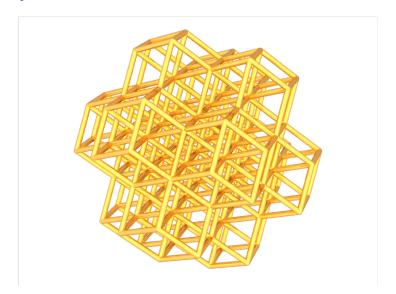
Projection of a Four-Dimensional Cube



Another Projection of a Four-Dimensional Cube

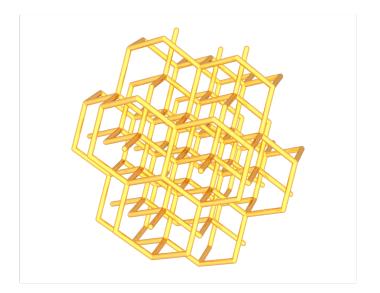


Tile by Translation



Remove Bars Strategically

Remove Bars Strategically—Diamond Crystal!



Parting Thoughts

How can we make more of these rich, reinforcing connections among math, science, technology, engineering, and art in the classroom?

Parting Thoughts

How can we make more of these rich, reinforcing connections among math, science, technology, engineering, and art in the classroom?

P.S. I learned about POV-Ray from a high school student, so I recommend letting your students learn to use these programs and then show you!

Thank you!

See http://www.ms.uky.edu/lee/nctm2017/nctm2017.html for this talk and related documents and media.

Reflection Cove #6 — 3:30–4:30

Images

- Carvone: https://en.wikipedia.org/wiki/Carvone
- Anamorphic Art: https://annonetheelephant.com/2012/ 04/17/anamorphic-annone
- iOrnament: http://www.spektrum.de/alias/dachzeile/ ornament-wettbewerb/1223589