desmos

Math Task Makeover Desmos Activity Builder

NCTM 2017

Bob - Jed - Michael

Engage with **us**

Bob Lochel

- Hatboro-Horsham HS, PA
- **y** @bobloch
- ≥ boblochel@gmail

Jed Butler

- Heritage HS, CA
- @mathbutler
- i jedidiahbutler@gmail

Michael Fenton

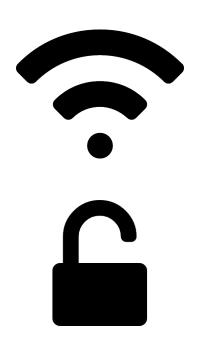
- Desmos
- **y**@mjfenton
- ™michael@desmos.com

Follow up: Reflection Cove 1 11am-12pm

Engage with everyone

Rate this presentation on the conference app!

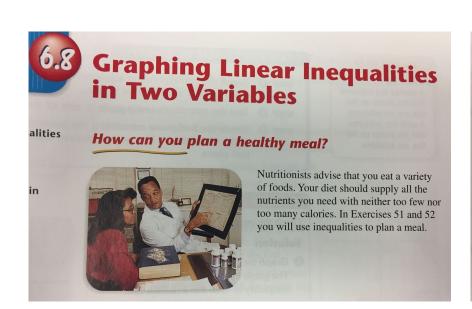
Search "NCTM" in your app store or follow the link at nctm.org/confapp to download



Join in the conversation! #NCTMannual

Download available presentation handouts from the online planner at nctm.org/planner

WiFi



Hey, students!

Go to student.desmos.com and type in:

EHYR8

1 - LINEAR INEQUALITIES

EXAMPLE 5 Use Slope-Intercept Form

Graph the inequality $2x - y \ge -2$ using the slope-intercept form of the corresponding equation.

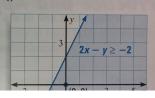
Solution

Write the corresponding equation in slope-intercept form.

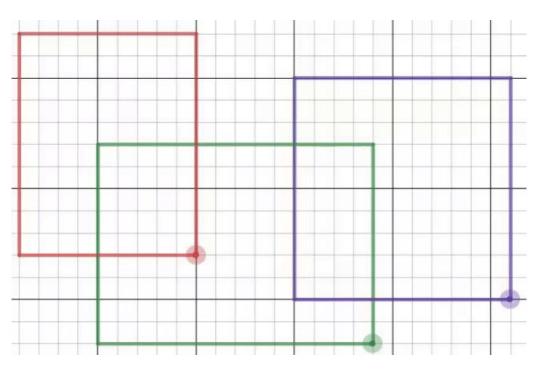
$$2x - y = -2$$

Write corresponding equation.

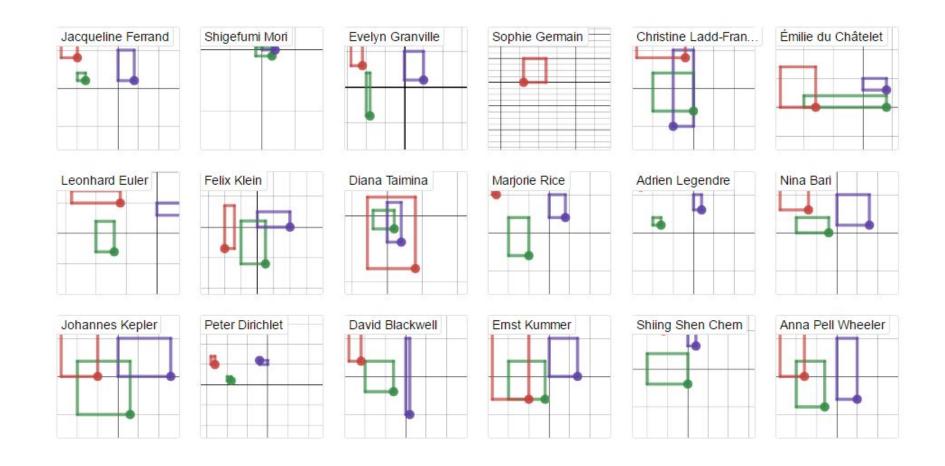
$$-y = -2x - 2$$

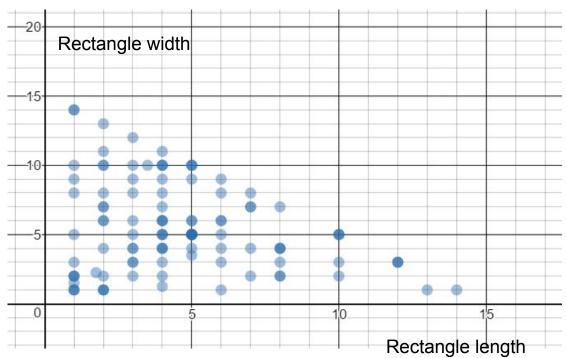

Subtract 2x from each side.

$$y = 2x + 2$$


Multiply each side by -1.

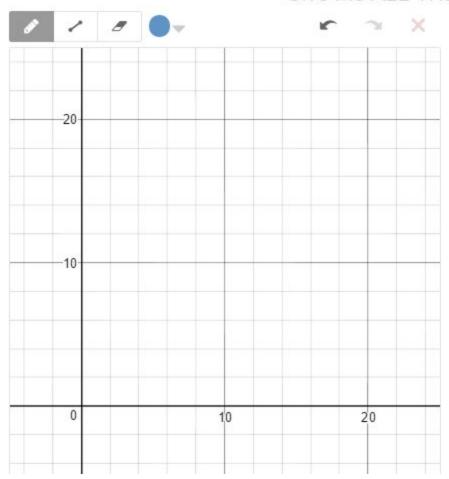
The graph of the line has a slope of 2 and a y-intercept of 2. The inequality is \geq , so use a solid line.


Test the origin: 2(0) - 0 = 0 and 0 is greater than -2, so (0, 0) is a solution. Since (0, 0) lies



SIMPLE TASKS ... LEAD TO GROUP DATA

Drag the corner points to create 3 different rectangles, which each have perimeter less than or equal to 30 units.



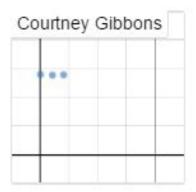
What do you notice / wonder?

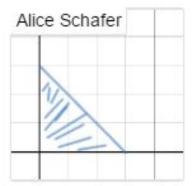
Where will we go next with this?

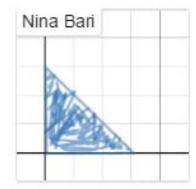
Give me ALL THE RECTANGLES!

If we could plot the length and width of EVERY POSSIBLE RECTANGLE with a perimeter less than or equal to 30, what would it look like?

Sketch your ideas on the graph given here.


10 Give me ALL THE RECTANGLES!

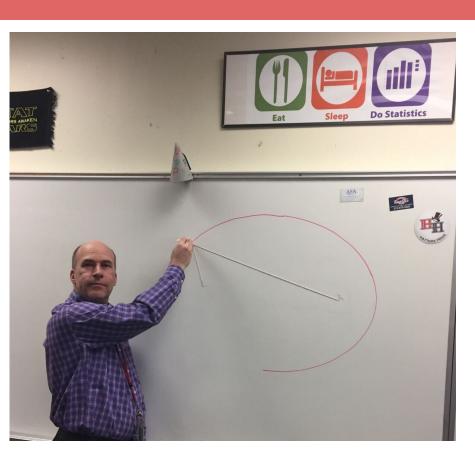

If we could plot the length and width of EVERY POSSIBLE RECTANGLE with a perimeter less than or equal to 30, what would it look like?


Sketch your ideas on the graph given here.

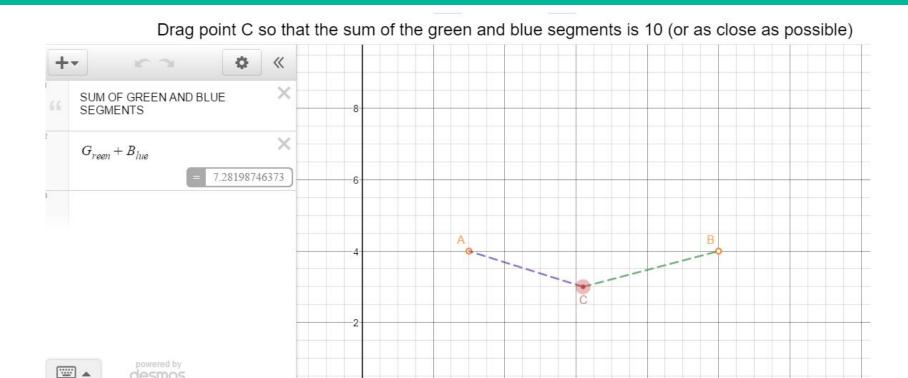
Responses Sketch Overlay

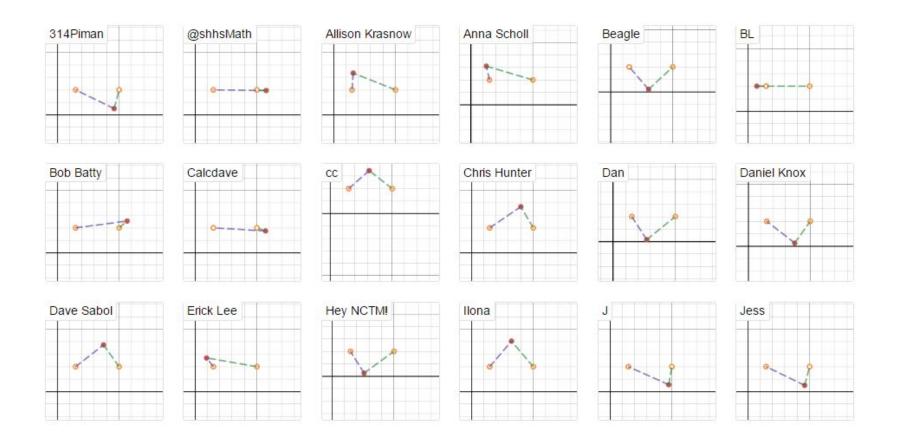
TASK MAKEOVER - ELLIPSES

0	ELLIPSE: An ellipse is a curve that is the
	locus of all points in the plane the sum o whose distances r/ and r2 from two fixed
	points F1 and F2 (the foci) separated by
	distance of 2c is a given positive constant 2a.
	2.4.
0	


Use the information provided to write the standard form equation of each ellipse.

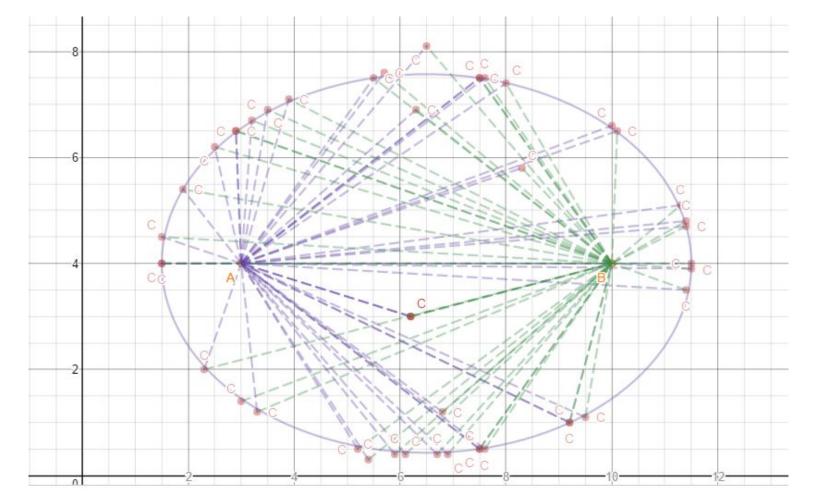
1) Vertices:
$$(-9, 2)$$
, $(-9, -16)$
Foci: $(-9, -7 + 4\sqrt{2})$, $(-9, -7 - 4\sqrt{2})$


Use the information provided to write the standard form equation of each ellipse.


2) Foci:
$$(8, -7 + \sqrt{95}), (8, -7 - \sqrt{95})$$

Endpoints of major axis: $(8, -7 + \sqrt{110}), (8, -7 - \sqrt{110})$

TASK MAKEOVER - ELLIPSES


"SCARY" DEFINITIONS ... ACCESSIBLE

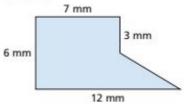
Responses Graph Overlay

An ellipse is:

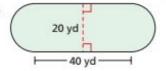
• a curve that is the locus of all points in the plane the sum of whose distances r1 and r2 from two fixed points F1 and F2 (the foci) separated by a distance of 2c is a given positive constant 2a.

Developing Formulas for Triangles and Quadrilaterals

Why learn this?

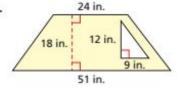

You can use formulas for area to help solve puzzles such as the tangram.

A tangram is an ancient Chinese puzzle made from a square. The pieces can be rearranged to form many different shapes. The area of a figure made with all the pieces is the sum of the areas of the pieces.


PRACTICE AND PROBLEM SOLVING

Multi-Step Find the shaded area. Round to the nearest tenth, if necessary.

9.


10.

11.

12.

Postulate 9-1-1

Area Addition Postulate

The area of a region is equal to the sum of the areas of its nonoverlapping parts.

Туре	Properties
Parallelogram	 Opposite sides are equal and parallel Opposite angles are equal
Rectangle	Opposite sides are equal and parallel All angles are right angles (90°)
Square	Opposite sides are parallel All sides are equal All angles are right angles (90°)
Rhombus	Opposite sides are parallel All sides are equal Opposite angles are equal Diagonals bisect each other at right angles (90°)
Trapezoid	One pair of opposite sides is parallel
Kite	Two pairs of adjacent sides are equal One pair of opposite sides are equal One diagonal bisects the other Diagonals intersect at right angle (90°)

Туре	Properties
Parallelogram	Opposite sides are equal and parallel Opposite angles are equal
Rectangle	Opposite sides are equal and parallel All angles are right angles (90°)
Square	Opposite sides are parallel All sides are equal All angles are right angles (90°)
Rhombus	Opposite sides are parallel All sides are equal Opposite angles are equal Diagonals bisect each other at right angles (90°)
Trapezoid	One pair of opposite sides is parallel
Kite	 Two pairs of adjacent sides are equal One pair of opposite sides are equal One diagonal bisects the other Diagonals intersect at right angle (90°)

Property	Parallelogram	Rhombus	Rectangle	Square
All sides are congruent		/		/
Opposite sides are congruent	/	~	/	/
Opposite sides parallel		/	/	/
Opposite angles are congruent	/	V	/	
All angles are right angles				
Diagonals bisect each other	/	/	/	
Diagonals are congruent			/	
Diagonals are perpendicular				
Each diagonal bisects opposite angles		/		/
Consecutive angles are supplementary	-	~	/	~

Туре	Properties
Parallelogram	Opposite sides are equal and parallel Opposite angles are equal
Rectangle	Opposite sides are equal and parallel All angles are right angles (90°)
Square	Opposite sides are parallel All sides are equal All angles are right angles (90°)
Rhombus	Opposite sides are parallel All sides are equal Opposite angles are equal Diagonals bisect each other at right angles (90°)
Trapezoid	One pair of opposite sides is parallel
Kite	 Two pairs of adjacent sides are equal One pair of opposite sides are equal One diagonal bisects the other Diagonals intersect at right angle (90°)

Property	Parallelogram	Rhombus	Rectangle	Square
All sides are congruent		/		/
Opposite sides are congruent	/	V	/	/
Opposite sides parallel		/	/	/
Opposite angles are congruent	/	V	1	
All angles are right angles				
Diagonals bisect each other	/	/	/	
Diagonals are congruent			/	
Diagonals are perpendicular				
Each diagonal bisects opposite angles		/		/
Consecutive angles are supplementary	-	~	~	~

student.desmos.com


Hey, students!

Go to student.desmos.com and type in:

RHF5M

Be right and wrong, in interesting ways

Math Maestro

Crystal Davis

Does your scatterplot form nearly a solid line?

Do your points seem to have a positive slope?

Do your points seem to have a negative slope?

Do your points more often touch or do they more often remain distinct?

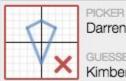
Is your points a strong correlation?

GUESSER Jake Read

PICKER

Do your points follow a positive or negative slope?

Does your graph display a positive slope?


Do a majority of your points touch?

Dave
GUESSER
Amber

Does your graph have four sides? Is your graph a triangle? Does your graph have edges? Does your graph have 5 sides?

Is your graph a polygon?

Does your graph have a quadrilateral?
Does your graph have four equal sides
GUESSER
Kimberly Wells

Does your graph have a quadrilateral?

Does your graph have a quadrilateral?

Expression of the property o

2⁻⁴ is read "2 to the negative fourth power."

Reading Math

Integer Exponents

WORDS	NUMBERS	ALGEBRA
Zero exponent—Any nonzero number raised to the zero power is 1.	$3^{0} = 1$ $123^{0} = 1$ $(-16)^{0} = 1$ $\left(\frac{3}{7}\right)^{0} = 1$	If $x \neq 0$, then $x^0 = 1$.
Negative exponent—A nonzero number raised to a negative exponent is equal to 1 divided by that number raised to the opposite (positive) exponent.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ $2^{-4} = \frac{1}{2^4} = \frac{1}{16}$	If $x \neq 0$ and n is an integer, then $x^{-n} = \frac{1}{x^n}$.

Simplifying Exponential Expressions

An exponential expression is completely simplified if...

- · There are no negative exponents.
- The same base does not appear more than once in a product or quotient.
- . No powers are raised to powers.
- . No products are raised to powers.
- · No quotients are raised to powers.
- Numerical coefficients in a quotient do not have any common factor other than 1.

Examples		Nonexa	mples	
$\frac{b}{a} x^3 z^{12} a^4 b^4 \frac{5^5}{t^5}$	$\frac{5a^2}{2b}$ $a^{-2}ba$	x • x ² (z ³)	$(ab)^4 \left(\frac{s}{t}\right)^5$	10a ² 4b

Products of powers with the same base can be found by writing each power as repeated multiplication.

$$a^{m} \cdot a^{n} = (a \cdot a \cdot \dots \cdot a) \cdot (a \cdot a \cdot \dots \cdot a)$$

$$m \text{ factors}$$

$$= a \cdot a \cdot \dots \cdot a = a^{m+n}$$

$$m+n \text{ factors}$$

Product of Powers Property

WORDS	NUMBERS	ALGEBRA
The product of two powers with the same base equals that base raised to the sum of the exponents.	$6^7 \cdot 6^4 = 6^{7+4} = 6^{11}$	If a is any nonzero real number and m and n are integers, then $a^m \cdot a^n = a^{m+n}$.

Polygraph - browse and find

Polygraph: Linear Systems

by Andrew Shauver | 30-45 minutes | Introduction

This Custom Polygraph is designed to spark vocabulary-rich conversations about systems of linear equations. Key vocabulary that may appear in student questions includes: parallel, intersect, solution, quadrant, axis, vertical, horizontal, slanted, increasing, and decreasing.

In the early rounds of the game, students may notice graph features from the list above, even though they may not use those words to describe them. That's where you can step in. After most students have played 2-3 games, consider taking a short break to discuss strategy, highlight effective questions, and encourage students in their use of increasingly precise academic language. Then ask them to play several more games, putting that precise language to work.

Polygraph: World of Functions

by Anne Schwartz | 30-45 minutes | Introduction

This Custom Polygraph is designed to spark vocabulary-rich conversations about various functions. Key vocabulary that may appear in student questions includes: linear, quadratic, exponential, cubic, absolute value, and sinusoid.

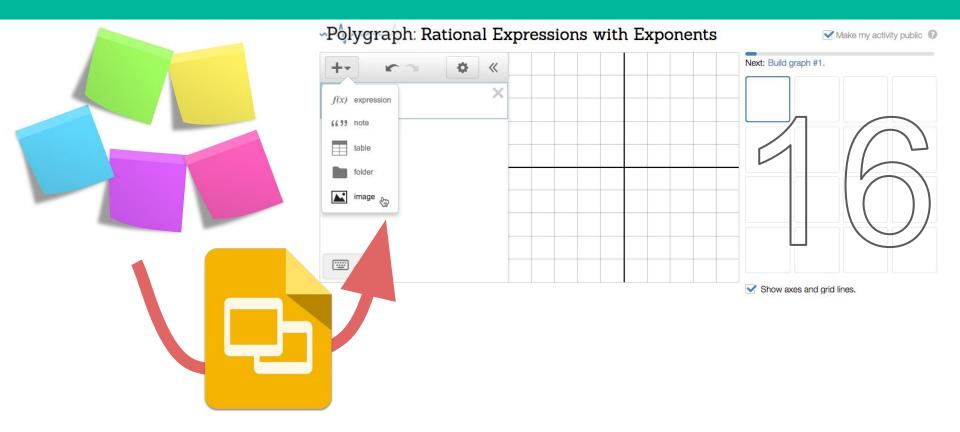
In the early rounds of the game, students may notice graph features from the list above, even though they may not use those words to describe them. That's where you can step in. After most students have played 2-3 games, consider taking a short break to discuss strategy, highlight effective questions, and encourage students in their use of increasingly precise academic language.

Polygraph: Twelve Functions

by Zachary Angeloni | 30-45 minutes | Introduction

This Custom Polygraph is designed to spark vocabulary-rich conversations about various functions. Key vocabulary that may appear in student questions includes: linear, quadratic, exponential, cubic, absolute value, rational, radical, sinusoid, and step.

In the early rounds of the game, students may notice graph features from the list above, even though they may not use those words to describe them. That's where you can step in. After most students have played 2-3 games, consider taking a short break to discuss strategy, highlight effective questions, and encourage students in their use of increasingly precise academic language.


Polygraph: Triangles

by Noel Hayden | 30-45 minutes | Introduction

This Custom Polygraph is designed to spark vocabulary-rich conversations about triangles. Key vocabulary that may appear in student questions includes:

7

Polygraph - create your own

Makeover 3 - Everything

How To

What's Possible

Where to Learn More

Engage with us

Bob Lochel

- Hatboro-Horsham HS, PA
- **y** @bobloch
- ⊠ boblochel@gmail

Jed Butler

- Heritage HS, CA
- **y** @mathbutler
- i jedidiahbutler@gmail
 i jedidiahbutler@gmail

Michael Fenton

- Desmos
- **y**@mjfenton
- ⊠michael@desmos.com

Follow up: Reflection Cove 1 11am-12pm

Engage with us

Follow up:

Reflection Cove 1 11am-12pm

Reflection Cove 1 11am-12pm