Challenging Precalculus Alternative Assessments Using the Free Online Desmos Calculator

By Neil D. Cooperman
Millburn High School
NCoop@att.net
Stephanie H. Cooperman
Chatham Middle School
Shc283@att.net
2017 NCTM Annual Meeting & Exposition
April 8, 2017

Innovation in Technology for Mathematics Education

Exploring Mathematics Software for Education

- Geometric Supposer
- Green Globs & Graphing Equations
- Mathematics Exploration Toolkit
- Discovery Learning in Trigonometry

Learning Mathematics by Playing Games

Learning Mathematics by Playing Games

Learning Mathematics by Playing Games

Trig Graphs and Their Polar Counterparts

Trig Graphs and Their Polar Counterparts

Part 1

- $f(x) = 2\sin(x)$
- f(x) = cos(2x)
- $f(x) = 2\sin(x) + \cos(2x)$
- $f(\theta) = 2\sin(\theta) + \cos(2\theta)$

Trig Graphs and Their Polar Counterparts

Part 2

- $f(x) = \sin(4x)^2$
- f(x) = cos(3x)
- $f(x) = \cos(3x) + \sin(4x)^2$
- $f(\theta) = \cos(3\theta) + \sin(4\theta)^2$

Follow That Curve

- Follow That Curve
 - \bullet y = x
 - $y = x + \sin(x)$
 - $y = x + 3\sin(x)$
 - $y = x + \sin(10x)$
 - $y = x^2$
 - $y = ((x + \sin(x))^2)$
 - $y = ((x + \sin(4x))^2)$
 - $y = 0.1x^2$
 - $y = 0.1((x + \sin(4x))^2$

Create a Filled in Circle

- Create Inner Ring
 - $y = (4 x^2)^{.5}$
 - $y = -(4 x^2)^{.5}$
- Create Outer Ring
 - $y = (9 x^2)^{.5}$
 - $y = (9 x^2)^{.5}$
- Fill in the Circle
 - $y=((6.5 + (2.5\cos(25x)) x^2)^{.5}$
 - $y = -((6.5 + (2.5\cos(25x)) x^2)^{.5}$

Create a Filled in Circle

Create Inner Ring

•
$$y = (4 - x^2)^{.5}$$

•
$$y = -(4 - x^2)^{.5}$$

Create Outer Ring

•
$$y = (9 - x^2)^{.5}$$

•
$$y = (9 - x^2)^{.5}$$

•
$$y = -((6.5 + (2.5\cos(25x)) - x^2)^{.5}$$

What It Looks Like on Desmos

Graphing Borders of Envelopes

- Borders
 - $y^2 = (\sin(x) + x)^2$
 - $y^2 = (3\sin(x) + x)^2$
- Fill
 - $y^2 = ((\cos(10x) + 2)\sin(x) + x)^2$
- Repeat with Inverses
 - $x^2 = (\sin(y) + y)^2$
 - $x^2 = (3\sin(y) + y)^2$
 - $x^2 = ((\cos(10y) + 2)\sin(y) + y)^2$

