Pattern Blocks The Forgotten Tool in Middle School

Jennifer Hagman <u>jennifer@mathandteaching.org</u> Jennifer Moffett <u>jarguelovesmath@yahoo.com</u>

In This Session You will Learn...

- How our understanding of definitions of shapes may have shifted
- The geometric progression with respect to angle relationships and dilations
- How pattern blocks can be used as a tool to investigate angle relationships and dilations
- Which Standards of Mathematical Practices are supported through these types of investigations

Defining Shapes

Shapes

- ▶ What do you notice?
- What are the names for each shape?
- Why do some shapes have more than one name?

Defining Shapes Always, Sometimes, Never

- ► A triangle is a parallelogram.
- ► A square is a parallelogram.
- ► A square is a rectangle.
- ► A rectangle is a square.
- A trapezoid is a parallelogram.
- A parallelogram is a trapezoid.

What is a trapezoid?

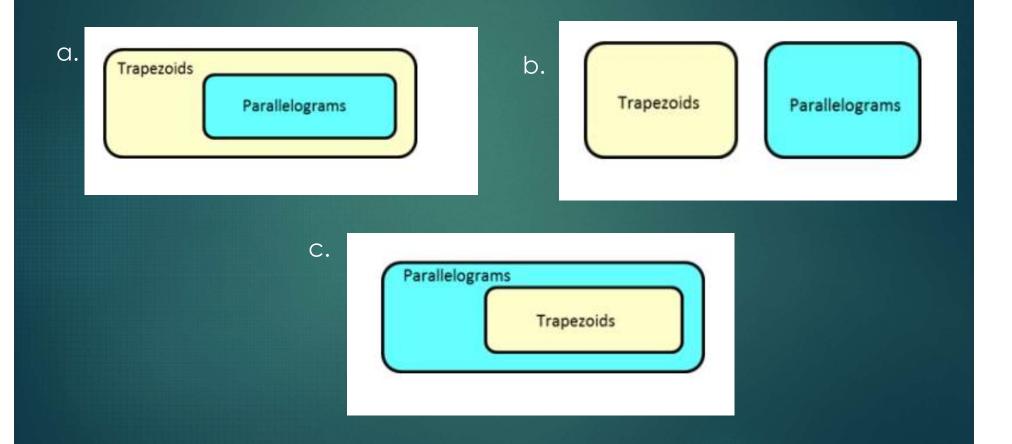
Moffett and Hagman are studying parallelograms and trapezoids. They agree that a parallelogram is a quadrilateral with two pairs of parallel sides.

What is a trapezoid?

Hagman says,

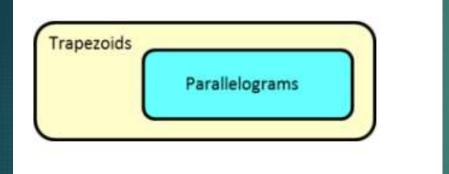
A trapezoid has one pair of parallel sides and a parallelogram has two pairs of parallel sides. So a parallelogram is also a trapezoid.

Moffett says,

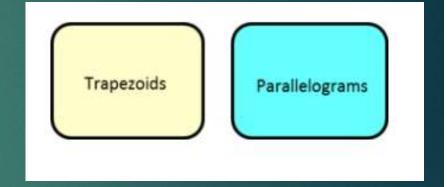

No- a trapezoid can have only one pair of parallel sides.

Hagman says,

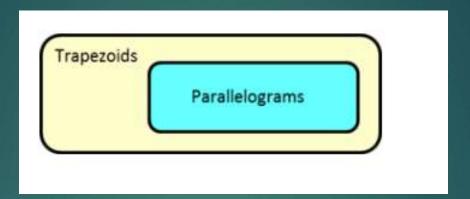
That's not true. A trapezoid has at least one pair of parallel sides, but it can also have another.


What is the difference between their definitions for a trapezoid?

Which picture represents the relationship between trapezoids and parallelograms for each definition?



So Who is Correct?


Hagman

Moffett

Inclusivity

The inclusive definition sets up a relationship between parallelograms and trapezoids that is exactly analogous to the relationship between squares and rectangles; the definition for rectangles includes squares in the same way that the inclusive definition of trapezoids includes parallelograms.

Angle Relationships

Angle Relationships Progression

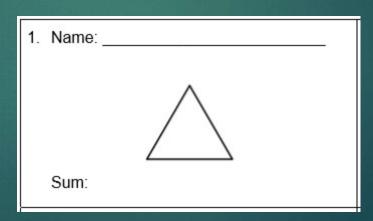
Grade 4

Understand angle concepts and how angles are formed

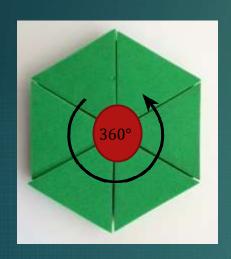
Recognize angle measure as additive

Measure and draw angles using a protractor

Grade 5


Describe and categorize two-dimensional figures by their attributes (e.g. all rectangles have four right angles and squares are rectangles, so all squares have four right angles)

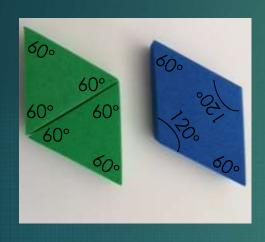
Grade 7


Use facts about supplementary, complementary, vertical and adjacent angles to write and solve equations for an unknown angle in a figure

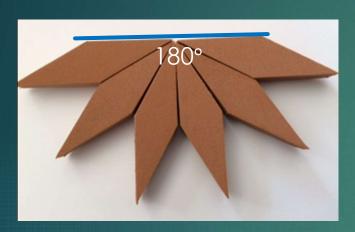
- ► A straight angle is 180°.
- ► An angle that turns through a complete rotation is 360°.
- How could we use pattern blocks to find the measure of the interior angles of an equilateral triangle?

equilateral triangle

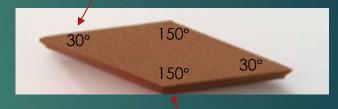
This is a review from Grade 4, MD.C5.a.

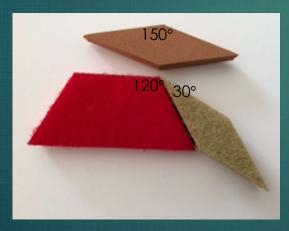


Divide the center (360°) by 6 for the interior angles of the triangles (60°). Since each triangle is equilateral, each interior angle must be the same, so all of the interior angles are 60°.


Your Turn!

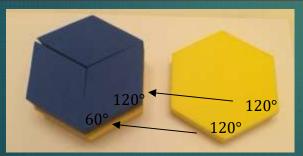
Find the interior angle measures for the other polygons. Be prepared to share your thinking.



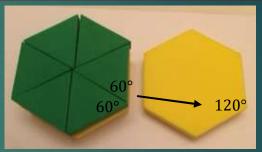


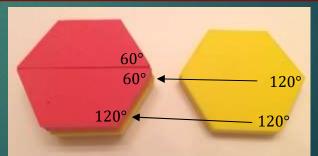
Two equilateral triangles can create the rhombus. We know each interior angle in the triangle is 60°. Add the two interior angles to create the obtuse angles on the rhombus (120°).

6 of the parallelogram's acute angles create a straight angle (180°). Divide 180° by 6. Each acute angle is 30°.



The obtuse angle of the parallelogram can be created by adding the trapezoid's obtuse angle with the acute angle on the parallelogram. $120^{\circ} + 30^{\circ} = 150^{\circ}$.

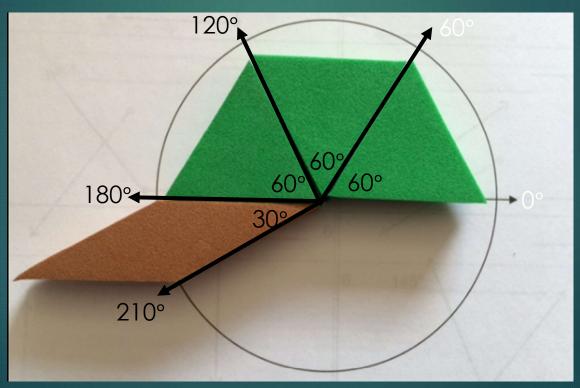

Below are a few strategies students have used for obtaining angle measures for pattern blocks.


The obtuse and acute angles of a parallelogram are supplementary.

The acute angle on a rhombus is half of the interior angle of a hexagon.

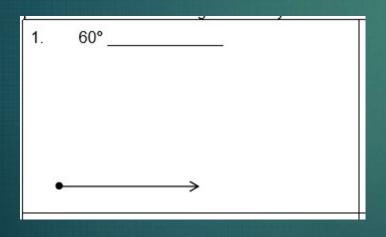
The sum of two interior angles of an equilateral triangle create an interior angle of a hexagon.

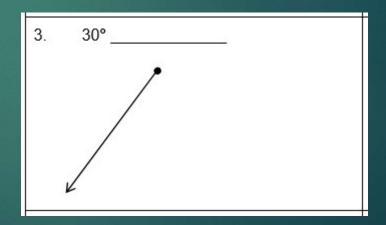
The acute angle on a trapezoid is half of the interior angle of a hexagon.

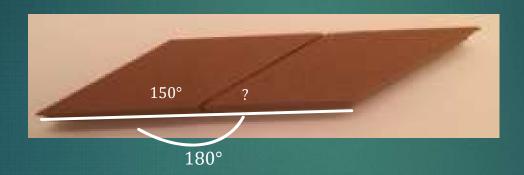

Make a Protractor!

Use what you NOW know about the measures of the angles of the shapes and CHOOSE tools you find helpful (other than a protractor –wah wah) to create a circular protractor with at least 16 different angle measures on it.

- ► Locate 0° with the ray
- Label angles in a counter-clockwise direction
- ▶ Note the angle that makes one full rotation around the circle is 360°.


Make a Protractor


Students use their pattern blocks and additive angle concepts to create a protractor with at least 16 angle measures.


Drawing Angles with Your Protractor

- One ray and the vertex of each angle is given.
- Using your protractor or pattern blocks, create the angle for the given degrees.

Integrating Equations and Expressions

Who Am I?

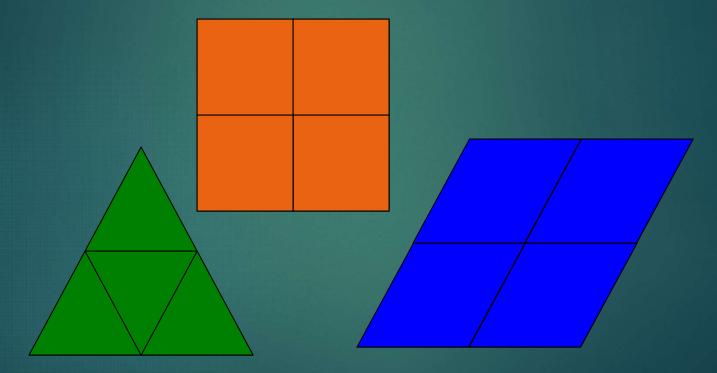
When I am added to an equilateral triangle, we are considered supplementary angles. Who am I?

- What equation could you use to represent this relationship?
- What is the missing angle?

When added to the acute interior angle of a rhombus, we are considered complementary angles. Who am I?

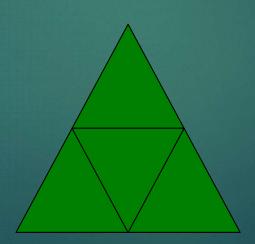
- What equation could you use to represent this relationship?
- What is the missing angle?

When two of us share a vertex with a hexagon, we are 360°. Who are we?


- What equation could you use to represent this relationship?
- What is the missing angle?

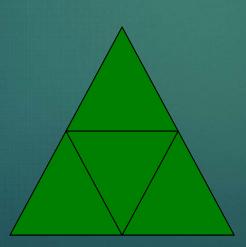
Dilations

Pattern Block Dilations


Choose one of the following sets to create:

Pattern Block Dilations

What is the relationship between the following distances???


- From your eye to the sheet protector
- From the sheet protector to the pattern blocks
- From your eye to the pattern blocks

Pattern Block Dilations

- Continue to explore the relationships as you change the "side length" of your pattern block arrangement.
- Record your measurements, and make a prediction about what will happen as you continue to increase the length of the side.

Dilations Debrief

▶ How was the "side length" of the pattern block arrangement related to where the individual pattern block was placed?

Dilations require a fixed point (the center of dilation) and a scale factor.

- Where was our fixed point?
- What was the scale factor?

Answers to selected problems posted soon!

Closure

- Why are we scaffolding elementary geometry standards into the lesson?
- How did these tasks support your middle school geometry standards?
- What MP standards did you use during this exploration?

Thank you for your time!

Jennifer Hagman

▶ Jennifer.r.hagman@gmail.com

Jennifer Moffett

- ▶ jarguelovesmath@yahoo.com
- www.moffett4understandingmath.com