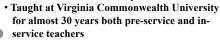


LET'S GET CRACKING

Caitlin was so excited that she found a great deal for Spring Break! Jet Blue was offering a flight to Fort Lauderdale for \$396 round trip. She was then planning to split a room with three of her close girlfriends and her share would be \$235. What will be the cost of her flight and hotel bill?



ADDITION U.S. HISTORICALLY-TAUGHT	
necessary. Follow the sa	ame procedure with
Example: the tens, hundreds, etc.	257
1. Add the ones $(7 + 9 = 16)$	+ 389
Put down the 6/carry the 1.	6
	11
2. Add the tens (1 + 5 + 8 = 14) Put down the 4/carry the 1.	257 + <u>389</u> 46
	11
3. Add the hundreds (1 + 2 + 3 = 6)	257
	+ 389
	646

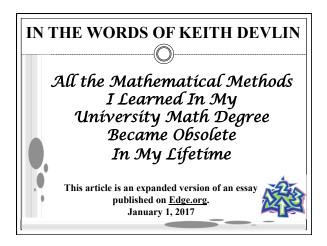
DR. JOHN VAN de WALLE

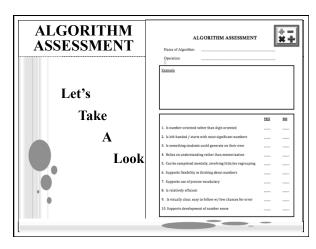
- Internationally-known mathematics educator
- Author of multiple books/resources
- Elementary and Middle School

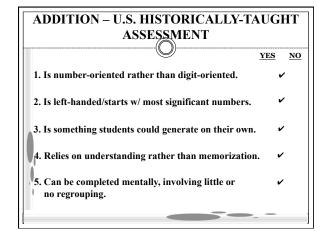
 Mathematics: Teaching Developmentally;
 series often used as text in pre-service classes

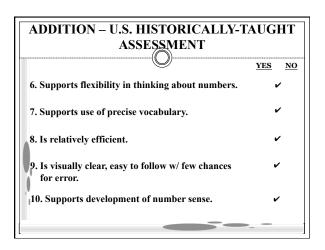
It is fun to figure out the puzzle of how children go about making sense of mathematics and then how to help teachers help kids.

TRADTIONAL ALGORITHMS


THE TRADITIONAL ALGORITHMS ARE NOT SERVING US WELL.


The four traditional algorithms are each clever procedures for computation that have been devised to work for all numbers with attention only to basic facts.


Some of the problems with these methods are inherent in the algorithms themselves.


Others are related to the difficulties of teaching these algorithms in light of their reduced need in today's society.

(Van de Walle)

ADDITION LANDMARK / FRIENDLY NUMBERS

Explanation: Change number(s) to "landmark" number(s) - "friendly" number(s) in our number system that are easy to work with; often multiples of 10

498 + 236Example: = 500 498 + 21. Change 498 to 500.

500 + 236 = 7362. Add the two addends.

3. Compensate for the +2 736 - 2 = 734by subtracting 2.

ADDITION **EQUAL / OPPOSITE CHANGE**

Explanation: Change one number to a landmark number. Equalize that change by performing the opposite operation on the other addend.

Example: 1. Change 48 to 50.

2. Apply an equal but opposite 34 - 2 = 32change to 34.

3. Add the two changed addends. 50 + 32 = 82

ADDITION PARTIAL SUMS (LEFT-TO-RIGHT)

Explanation: Add the components of the addends by place value. Add the partial sums to find the total sum.

364 + 168 Example:

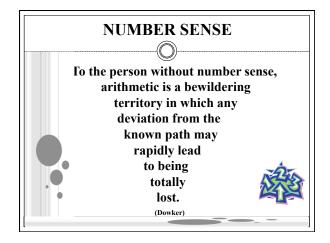
1. Add the hundreds: (300 + 100). 400

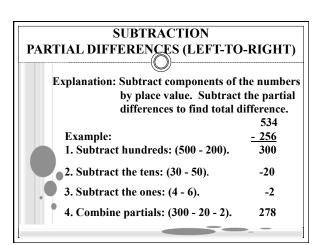
2. Add the tens: (60 + 60). 120 3. Add the ones: (8 + 4).

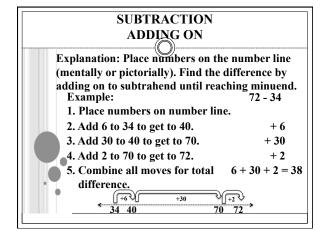
4. Add partial sums: (400 + 120 + 12). 532

12

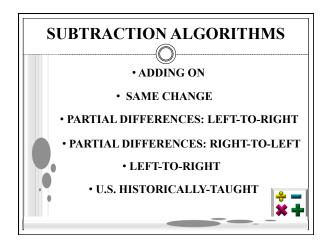
ADDITION ALGORITHMS

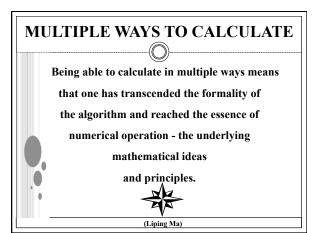

• Equal and Opposite Change

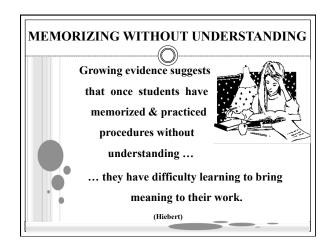

• Partial Sums: Left-to-Right

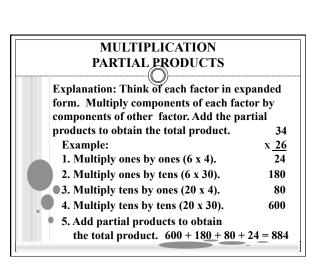

• Partial Sums: Right-to-Left

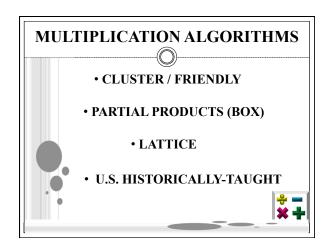
• U.S. Historically Taught

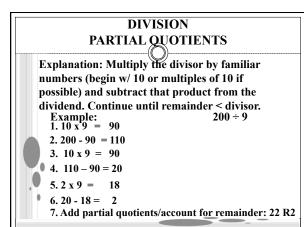


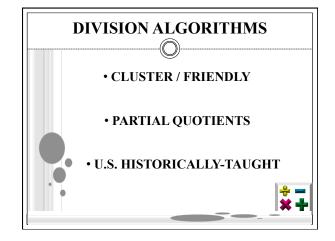







SUBTRACTION SAME CHANGE Explanation: Change the subtrahend to the nearest multiple of 10, 100, etc. Apply the same change to the minuend and find the difference. Example: 1. Change 378 to 400. 2. Apply the same change to the minuend. 3. Find the difference. 858 - 400 = 458





CHILDREN'S FIRST METHODS Children's first methods are admittedly inefficient. However ... if they are free to do their own thinking, they invent increasingly efficient procedures just as our ancestors did. By trying to bypass the constructive process, we prevent them from making sense of arithmetic. (Kamii & Livingston)

If I teach mathematics

ONLY

in the way I understand it, ...

then only children who understand it in the same way

will learn it.

(Lee Stiff)

LOOKING AHEAD FOR OUR STUDENTS

We can no longer afford the time required for the teaching, reteaching, and remediation of outmoded skills [traditional algorithms].

Good workers in almost every field will need number sense. Today's curriculum shortchanges students in the necessary skills while wasting time teaching those skills that are obsolete in the work place.

(Van de Walle)

A WORD TO ALL

... whereas the focus used to be on mastering the skills with the goal of carrying out the procedures accurately-something that, thanks to the learning capacity of the human brain, could be achieved without deep [or] conceptual understanding - the focus today is on that conceptual understanding.

That is a very different goal, and quite frankly a much more difficult one to reach.

(Devlin 2017)

A FAVORITE

Learning is not attained by chance.

It must be sought for with ardor and attended to with diligence.

~ Abigail Adams