NCTM 2017 San Antonio, Texas 11am-12pm

Are our Students Ready for the Redesigned SAT?

Presented by: Kimberly Epps Oceanside High School Oceanside, NY

Practice Exam 1 Section 3 No Calculator

7

$$m = \frac{\left(\frac{r}{1,200}\right)\left(1 + \frac{r}{1,200}\right)^{N}}{\left(1 + \frac{r}{1,200}\right)^{N} - 1}P$$

The formula above gives the monthly payment m needed to pay off a loan of P dollars at r percent annual interest over N months. Which of the following gives P in terms of m, r, and N?

A)
$$P = \frac{\left(\frac{r}{1,200}\right)\left(1 + \frac{r}{1,200}\right)^{N}}{\left(1 + \frac{r}{1,200}\right)^{N} - 1} m$$

B)
$$P = \frac{\left(1 + \frac{r}{1,200}\right)^{N} - 1}{\left(\frac{r}{1,200}\right)\left(1 + \frac{r}{1,200}\right)^{N}} m$$

C)
$$P = \left(\frac{r}{1,200}\right)m$$

D)
$$P = \left(\frac{1,200}{r}\right)m$$

7

x	f(x)
0	3
2	1
4	0
5	-2

The function f is defined by a polynomial. Some values of x and f(x) are shown in the table above. Which of the following must be a factor of f(x)?

- A) x-2
- B) x-3
- C) x-4
- D) x-5

$$x^3(x^2-5)=-4x$$

If x > 0, what is one possible solution to the equation above?

Practice Exam 3, Section 4 (Calculator permitted).

38

If shoppers enter a store at an average rate of r shoppers per minute and each stays in the store for an average time of T minutes, the average number of shoppers in the store, N, at any one time is given by the formula N = rT. This relationship is known as Little's law.

Questions 37 and 38 refer to the following

The owner of the Good Deals Store estimates that during business hours, an average of 3 shoppers per minute enter the store and that each of them stays an average of 15 minutes. The store owner uses Little's law to estimate that there are 45 shoppers in the store at any time.

37

information.

Little's law can be applied to any part of the store, such as a particular department or the checkout lines. The store owner determines that, during business hours, approximately 84 shoppers per hour make a purchase and each of these shoppers spend an average of 5 minutes in the checkout line. At any time during business hours, about how many shoppers, on average, are waiting in the checkout line to make a purchase at the Good Deals Store?

The owner of the Good Deals Store opens a new store across town. For the new store, the owner estimates that, during business hours, an average of 90 shoppers per hour enter the store and each of them stays an average of 12 minutes. The average number of shoppers in the new store at any time is what percent less than the average number of shoppers in the original store at any time? (Note: Ignore the percent symbol when entering your answer. For example, if the answer is 42.1%, enter 42.1)

Answers:

QUESTION 7.

Choice B is correct. Since the right-hand side of the equation is P times the

expression
$$\frac{\left(\frac{r}{1,200}\right)\left(1+\frac{r}{1,200}\right)^N}{\left(1+\frac{r}{1,200}\right)^N-1}$$
, multiplying both sides of the equation by the reciprocal of this expression results in $\frac{\left(1+\frac{r}{1,200}\right)^N-1}{\left(\frac{r}{1,200}\right)\left(1+\frac{r}{1,200}\right)^N}m=P$.

Choices A, C, and D are incorrect and are likely the result of conceptual or computation errors while trying to solve for *P*.

Practice Exam 3
Section 3
No Calculator

QUESTION 7.

Choice C is correct. If x - b is a factor of f(x), then f(b) must equal 0. Based on the table, f(4) = 0. Therefore, x - 4 must be a factor of f(x).

Choice A is incorrect because $f(2) \neq 0$; choice B is incorrect because no information is given about the value of f(3), so x - 3 may or may not be a factor of f(x); and choice D is incorrect because $f(5) \neq 0$.

QUESTION 16.

The correct answer is either 1 or 2. The given equation can be rewritten as $x^5 - 5x^3 + 4x = 0$. Since the polynomial expression on the left has no constant term, it has x as a factor: $x(x^4 - 5x^2 + 4) = 0$. The expression in parentheses is a quadratic equation in x^2 that can be factored, giving $x(x^2 - 1)(x^2 - 4) = 0$. This further factors as x(x - 1)(x + 1)(x - 2)(x + 2) = 0. The solutions for x are x = 0, x = 1, x = -1, x = 2, and x = -2. Since it is given that x > 0, the possible values of x are x = 1 and x = 2. Either 1 or 2 may be gridded as the correct answer.

QUESTION 37.

The correct answer is 7. The average number of shoppers, N, in the checkout line at any time is N=rt, where r is the number of shoppers entering the checkout line per minute and T is the average number of minutes each shopper spends in the checkout line. Since 84 shoppers per hour make a purchase, 84 shoppers per hour enter the checkout line. This needs to be converted to the number of shoppers per minute. Since there are 60 minutes in one hour, the rate is $\frac{84 \text{ shoppers}}{60 \text{ minutes}} = 1.4 \text{ shoppers per minute. Using the given formula with } r = 1.4 \text{ and } t = 5 \text{ yields } N = rt = (1.4)(5) = 7 \text{. Therefore, the average number of shoppers, } N$, in the checkout line at any time during business hours is 7.

QUESTION 38.

The correct answer is 60. The estimated average number of shoppers in the original store at any time is 45. In the new store, the manager estimates that an average of 90 shoppers per hour enter the store, which is equivalent to 1.5 shoppers per minute. The manager also estimates that each shopper stays in the store for an average of 12 minutes. Thus, by Little's law, there are, on average, N = rt = (1.5)(12) = 18 shoppers in the new store at any time. This is $\frac{45-18}{45} \times 100 = 60$ percent less than the average number of shoppers in the original store at any time.