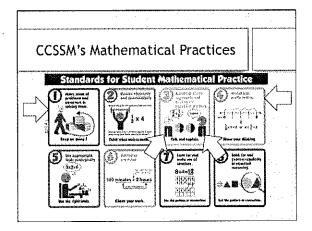


- CCSSM
- · Mathematical Practices
- · Defining Mathematical Discourse
- · Why should we talk?
- · Creating a learning community

To think is to communicate To communicate is to think


Many parents' perspective of the reform mathematics:

"It's like, Bill has three goldfish. He buys two more. How many dogs live in London?"

Comedian Louis C. K.
The Late Show with
David Letterman

MATH Is FUN!

Words for mathematical discourse

- Math-talk
- Dialogic
- Teacher-student interaction
- Student-student interaction
- Accountable talk
- Number talks
- · Math conversations
- · Classroom discussions
- Dialogue
- Math expressions
- Sharing strategies
- Think like mathematicians

Definitions of mathematical discourse

- that they reveal their understanding of concepts. Discourse involves asking strategic questions that elicit from students both how a problem was solved and why a particular method was chosen. (Ministry of Education, New Zealander)
- Mathematical discourse occurs when teachers ask questions and students respond.
- Schwols & Dempsey (2012)—identify the following components: questioning facilitation of conversation, appreciation for accuracy on reasoning and proof, and, collaborative exchange of ideas.

 Discourse-ways of representing, thinking talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment (ICTM, 1991).
- environment (MCIM, 1991).

 Whole classroom discussions in which students talk about mathematics in such a way that they reveal their understanding of concepts. Students also learn to engage in reasoning and debate (Maruire & Neill, 2006).

My working definitions of mathematical discourse

- Discourse, "math-talk," or instruction in which young learners are challenged by asking them to clarify and justify their ideas and to express their mathematical thinking.

 Knowing what to do with students' ideas and teaching children how to by identifying a goal and then understand how to structure and facilitate the conversation to meet that goal (Kazemi & Hintz, 2014).
- An interactive and sustained discourse of a dialogic nature between teachers and students aligned to the content of the lesson that addresses. learning issues (Piccolo, Harbaugh, Carter, Capraro, & Capraro, 2008, p. 378)

Why Should We Talk?

- and we get to help others learn." a 4^{th} grader speaking (TCM, Wagganer, 2015)
- Vygotsky (1962) suggested that thinking develops into words in a number of phases, moving from imaging to inner speech to inner speaking to speech. Tracing this idea backward, speech—talk—is the representation of thinking.
- Language permits its users to pay attention to thinking.
 Language permits its users to pay attention to things, persons and events, even when the things and persons are absent and the events are not taking place. Language gives definition to our memories and, by translating experiences into symbols, converts the immediacy of craving or abhorrence, or hatred or love, into fixed principles of feeling and conduct. (Huxley, 1958p. 168)

Types of Purposetul Student Talk Talk

Creating a Math-Talk Learning Community

- A math-talk environment is a helping community where inquiry and meaning-making are nurtured, and everyone is a teacher and a learner.
- · Differences Among Students
 - Linguistic
 - · Proficiency in the home language
 - Number of languages spoken
 - Motivation
 - Poverty · Personality

Brief review of the research literature (1)

- (National Mathematics Advisory Panel so exploring instructional strategies to increase this practice is important (Boohen, Kolkman, & Kroesbergen, 2011; Kilbanoff, Levine, Huttehlocher, Vasilyeva, & Hedges, 2006). The language teachers and their students' use in the classroom affects conceptual development (Johnston, 2004).
- Standard of Mathematical Practice 3—Construct viable arguments and critique the thinking of others—guide students to explain their thinking and consider the mathematical thinking of others (NGA & CCSSO, 2010, p. 6)
- Recent studies in the professional development of teachers has focused on the importance of classroom discourse as it relates to teacher learning—a verbal window into the teacher's developing practice by documenting patterns of interactions between the teacher and students (Wood, 1995).

Discourse, blumber feller

No matter what you call it, Math Talk" is essential.

Brief review of the research literature (2)

- In teacher education, we need to cultivate a practice that engages students in dialogic interactions. Changing the nature of classroom discourse likely requires confronting existing norms for doing mathematics. Preservice teachers are at a critical conjuncture at which teacher educators can assist in renegotiating the nature of classroom discourse (Blanton, Berenson, to Norwood, 2001).
- In a study of 35 kindergarten teachers suggests that teachers should be careful and selective with the amount of teacher talk they offer to young children (Boonen, Kolkman, & Kroesbergen, 2011).

 Analysis of two preservice teachers conceptions and practices of various forms of classroom communication: uni-directional, contributive, reflective, and instructive.

Strategies to Teach Mathematical Discourse

- Discuss why math talk is important.
- · Teach students how to listen and respond.
- · Introduce sentence stems.
- · Contrast explanation versus justification.
- · Give an example.

Productive Talk Moves

Maths Talk Moves

- Revoicing: Teacher repeats come of all of what the student has said. Students verify.
- Repeating: Asking students to restate someone else's reasoning.
- Reasoning: Asking students to apply their won reasoning to someone else's reasoning.
- Adding on: Promoting students for further participation.
- · Waiting: Using wait time.

From Classroom Discussion: Using Math Talk to Help Students Learn, 2004

Creating Math Talk Communities TCM, Wagganer, 2015

After in-depth reading about how to force clearpoin math-talk, the author presented sentence seems, a sool introduced by Baveding and Wills (2012).

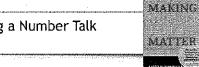
Sontence stems

This is subject think ...

I have a different perspertive facescare ...

I made a connection with what said ... When I thought about the question, I remembered ...

I chase this method because


Rawding & Wills, 2012

Video-Preservice Elementary Teacher-Kindergarten Student

Planning a Number Talk

- · Anticipate different strategies
- · How will you record each of these strategies
- · What question might you ask to fully understand and represent a student's thinking or method?
- Reflecting—what do you remember, what problem might you do next, why?

Deepening Understanding, Grades 4-10;

mention where the carrier engine of the comment of the contract of the contract of the carrier o

Picture Books as the Springboard--A Reader's Guide

- · Summary of the book
- Objectives
- Key Concepts
- Recommended Questions to Ask your Child(ren)—to encourage and engage in dialog
- Engaging the child(ren)-hands-on exploration to continue the dialog and enhance the concept
 - · Example (handout)--Fish Eyes, Lois Elhert

Fith Eyest A Book Low Can Countym [Sis Khieri

Not Currently "one more there" counting patients, member of objects in a set

Tarner Vocabioary/Skith counting sees, one more than pattern

Abstirbates paper platos, enumero, one dia

- Story hour, Soripts

 1. Tother we are going to "count to rea." When do we count to rest? Counting tooks, treats, marks in spinar, eraytine, gently
 sucket, inspirar, eraytine, gently
 sucket in the story of the stor

- story. Act's link at this I ame green; Ifth. Cast you wer the little dark lish on this page? One green his and the little that R this makes how many list? Two. Green! green his and the little that R this makes how many list? Two. Green! green, new, I have a stocken rapid and lough each light and count about. And one more with the little that his lacket, when stany? There, Good John Two Rish with one mare wake there fith, Lavi constitution, and the little standard list of the light and list of the light and list of the light and list of the list of the light and list of the li
- cuation, one, two, fitnes,
 Ware, I three spilling fits, Let'te round them, one, true, three, Agoin, Instal whiche point
 and loost each tiet and with the class count deed how many fish. And may mare with the
 fitness of the county of the county of the county of the county of the
 fitness every personal that include the filled that this absence that gotters,
 ofter reading the book, and what is heptgrading to this stary. Look clerchy, from you we
 see more first, Lark go hack and "count of "county" and more first on each page.

Reader Guide/Storybook Script p. 2

Reader Guide/Storybook Script p. 2

Reader Guide/Storybook Script p. 2

1. Using pienress of fish from the book, have students place the quantity represented in the story and add "one more" than. Then ask is student what is the total number on your paper plate? For example, not jumping fish, flace 2 counters on you paper plate, and one more unakes (adding one more counter) how many? Three, Well dame, Let's count them, one, two, three Another example, three sandling fish...how many counters are you going to place on your paper plate? Three, Right, And one more, makes (tabling too more counter). Another of the place on your paper plate. Three Might, and one more undees fourt, Let's count them, one, two, three, four, Good Job!

Next, roll be die far your students for count on that momer of counters on place on a paper plate. Then add "one more" to flut group of counter and ask student low many do you have now? To see xample, What flid you roll? Good. A live, Count out five counters—me, two, three, four, five, Ilow many altogetier? live, Let's add "one more". Now how many do you have 2 Let's count, one, two, three, four, five, ilow many do you have 2 Let's count, one, two, three, four, five, ilow many do you have 2 Let's count, one, two, three, four, five, ilow many do you have 2 Let's count, one, two, three, four, five, ilow the students represent one more than the students represent your firm of the three counters and add you move.

3. Bod the dis. Ask as student, what is the number of the dis? If we added the four amore "in the farmed counters and add you move."

4. Who can describe the pintleve? Adding one more than.

5. A challinger (if rondy). Roll the dis and ask a student what is the number that is "one more than" the quantity that is on the die. For example, if a student tolls a "three" the correct response would be: "four".

Power of Questioning as a Way of Learning

All our knowledge results from questions, which is another way of saying that question-asking is our most important intellectual tool.

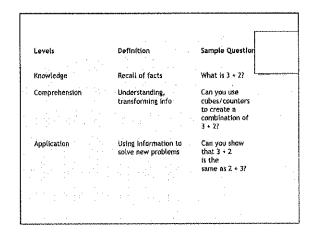
-- Neil Postman

Teachers use guestions to serve many purposes in a classroom. Cotton (1988)

- To develop interest and motivate students to become actively involved in lessons;
- To evaluate students' preparation and check on homework or seatwork completion;
- To develop critical thinking skills and inquiring attitudes;
- To review and summarize previous lessons;
- To nurture insights by exposing new relationships;
- · To assess achievement of instructional goals and objectives; and
- · To stimulate students to pursue knowledge on their

Revisit Bloom's Taxonomy of the Cognitive Domain (1956)

- Probing questions are a teaching/assessment strategy that provides insight into the mental process students' use by engaging them in conversation about mathematics.
- The goal of the question is to deepen students' understanding of the mathematics concepts.
- Preparing these effective questions are an integral component of designing quality mathematics lesson plans for the classroom.


An Effective Question

The ones for which students actively compose a response and thereby become engaged in the learning process.

Bloom's Taxonomy Revised (2002)		
Calegor)	Description	Related Cognitive Processes
formerly (transletter)		Recognizing Reculting
Emitrodand (formal) Compensioni	Determining the resump of neutrandural necessities, and graphic continuities.	interpreting fixenselfying Classifying finementaling interring Comparing fixelalating
Apply	Carrying that or insing a procedure on a given sinuation	freeding implementing
Analyse	Brishing material into its constituent parts and detecting bury the parts relate to one number and in an overall structure or purpose.	Differentiating Organizing Attributing
Essingle	Maxing judgments toxed on criteria and standards.	Lincoling Critiquing
Carate (Sentency Symbolical)	Putting ofeneris together to form a movel, enhance whole or make an original product.	Kienerating Plateing Producing



Levels Definition Sample Question Breaking down the idea Explain the "Turnaround Analysis into component parts (Commutative Property) Combine parts to form new solutions to a problem Write the four members Synthesis fact family for 3 + 2 = 5 (Addition/Subtraction Fact families); What are other ways to arrive at the answer of 57 Evaluation Suggesting well-reasoned What is the best way to arrive at the answer of 5? Justify your answer.

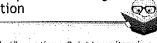
Hunkins (1995)

"In a classroom atmosphere conducive to good questions and questioning, students realize a shared responsibility for their learning."

Video Preservice Special Education Teacher-Elementary Student

Quicinia Type	Sample Queirion	
telescope of Charleston	Hey do jeu in O.S.	
Owner Barries Paper	Bás vi de ssapere or .	
Quenes that been Assumption	Him сып зам эстіў ты тындына.	
Queduras Hart Porter Information, Research	Language em elumple / Carron el se un	
Booking and Capaco	in Appropriest (*	
Outpleton spool Alexberry to become of	BRITE MATTER VIN HE SON IT?	
Quertiens that Probe Implications and	श्रीका तरे होते । न्ये प्रकृतिका को की किये	
Consideration	Manusty Photo:	
decension and and and	ны част ром отт ромно.	
Question that Pools Consepts	Hay or hote in the root supertime.	
Querions that Probe interescential	How did you prich that comparison?	
Interpredictions.		
والمواردة والمعادمة المعارضة والمعارضة وما وهوا المعارضة والمارسة والمعارضة والمعارضة والمعارضة والمعارضة		

Socratic Questions


Wait-time---the "miracle pause" beyond 3 seconds

- achievement:
- Improvements in student retention, as measured by delayed tests;
- increases in the number of higher cognitive responses generated by students;
- increases in the length of student responses;
- increases in the number of unsolicited responses;
- unsolicited responses;

 Decreases in students falling to respond:
- Increases in the amount and quality of evidence students offer to support their inferences:
- increases in contributions by students who do not participate much when wait-time is under three seconds:
- Expands the variety of responses offered by students;
- Decreases in student interruptions:
- Increases in student-student interactions; and,
- Increases in the number of questions posed by students.

Three Steps to Encourage Interaction

- Ask "what" questions. Point to an item in a book and say, "what's this?"
- Expand on what the child says. Keep expansions short and simple. Add, "Yes, you're right! That's a square."
- 3. Ask open-ended questions. "Tell me about."
 "What If?" "What do you think?"

The value of "Why?"

- Answers to "Why?" questions require reflective thinking and diminish guesses or responses based on rote memorization.
 - Why did that happen?
 - Why didn't that happen?
 - · Will that always happen?
 - What are the next steps?
 - · What will happen next?
 - Can you illustrate your answer?
 - · Is there another way to solve it?
 - Have you exhausted all the possibilities?

Dialogic Reading Technique-PEER

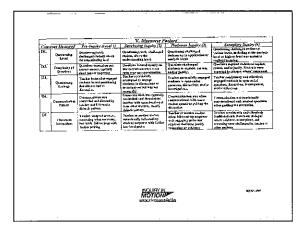
- **Prompts** the child to say something about the book/problem situation/manipulatives
- Evaluates the child's response
- Expands the child's response by rephrasing and adding information to it, and
- Repeats the prompt to make sure the of has learned from the expansion.

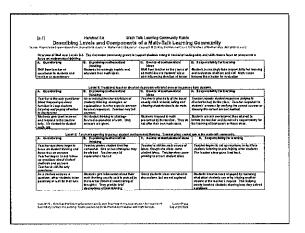
Teacher-Student Interaction Example--PEER

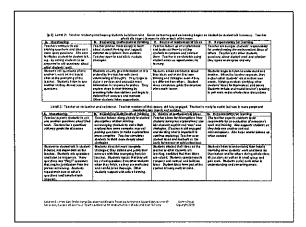
Looking at the page of a book that has a
picture of a red triangle on it. The teacher
says, "What is this?" while pointing
to the triangle. The child says, triangle, and
the teacher follows with "That's right
(evaluation); it's a red triangle (expansion);
look at that red triangle" (repetition)

Questioning for Teachers and Students

- Elicit student thinking
- Tell us what you see, Tell us your thinking
- Support student thinking
- What did you mean when you said, Show us on your drawing what you mean
- · Extend student thinking
- Increase participation of other students in the conversation
- · Probe specific math topics

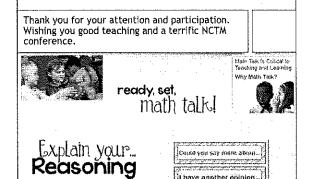

How to prompt children-CROWD


- Completion prompts—fill in the blank, provides child with information on the structure of language
- Recall prompts—Can you tell me? Explain steps.
- Open-ended prompts—Tell me what is happening, increase expressive fluency
- Wh- prompts—what, where, when, why, how, develop new vocabulary
- Distancing prompts—relate pictures or words outside the classroom, connect to the real world



Rubrics for Implementing Discourse for Teachers

- www.clemson.edu/iim
- Session 5 How Can Professional Development Enable Teachers to Improve Student Achievement? Corwin Press Secondary Lenses on Learning: Team Leadership for Mathematics in Middle and High Schools Copyright 2009
- Silicon Valley Mathematics Initiative, The Mathematics Teaching Rubric—Teacher's Role, Student's Role, Tools for Enhancing Discourse



Final Thoughts on Math-Talk

- · Goal-a nurturing, meaning-making math talk
- · Everyone is a teacher and a learner
- · Enhance everyone's mathematical understanding, competence, and confidence

References

Blanton, M. L., Berenson, S. B., & Norwood, K. S. (2001). o prospective multiemotics teacher's developing practice, 17, 227-242.

Boonen, A. J. H., Kolkman, Kroeshergen, E. H. (2011). The relation between feachers' moth talk and the acquisition of number sense within kindergarten classrooms, 49, 281-299. Brendefur, J., & Frykholm, J. 320001. Promoting mathematic communication in the classroom: Two preservice teachers' conceptions and practices, 3, 125-153.

Johnson, P. (2004). Choice words: How our language affects children's learning. Portland, ME: Stephouse.

Kazemi, E. & Hintz, A. (2014). Intentional talk: How to structure and lead productive mathematical discussions. Partland, ME: Stenhouse.

Kibangiff, R. S., Lavine S. C., Hetiprojecter, J., Matteros, M., & Redeos, L. Y. (2009). Preschool Psychology, 42(1), 57-69.

Psychology, 42(1), 57-69.

Psychology, 42(1), 57-69.

Psychology, 42(1), 57-69.

Psychology, 42(1), 57-610.

Psychology, 42(1), 42(1), 42(1), 42(1).

Psychology, 42(1), 42(1), 42(1).

Psychology, 42(1), 42(1), 42(1), 42(1), 42(1), 42(1), 42(1).

Psychology, 42(1), 4

Smith, M. S., & Stein, M. K. (2011). Practices for archestrating productive mathematics discussions. NCTM & Corwin.

Stein; C. C. (2007). Promoting mathematical discourse in the classroom. Mathematics Teacher, 101(4), 265-289.

Rate this presentation on the conference appl

Search "NCTM" in your app store or follow the link at nctm.org/confapp

Join in the conversation! #NCTMannual

Download available presentation handouts from the online planner at nctm.org/planner