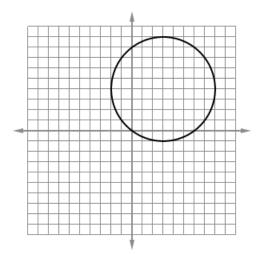

What Does Domain Have to Do with It?

NCTM Annual Meeting and Exposition San Antonio, Texas April 7, 2017

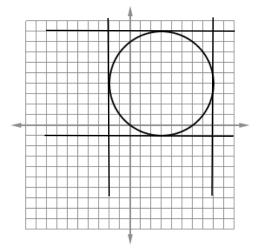
Clifton Wingard
Delta State University
Cleveland, Mississippi
cwingard@deltastate.edu

FINDING DOMAIN Warm Up

Using the given number lines, write the indicated inequalities and interval notation.


Finding Domain and Range

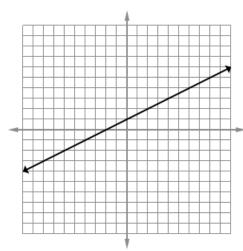
Examination of the graph of a relation can reveal the domain and range. Knowing how to read the graph is a key component to correctly identifying these important sets of real numbers. The process described and illustrated here will help to focus on the important aspects of this process.


Steps

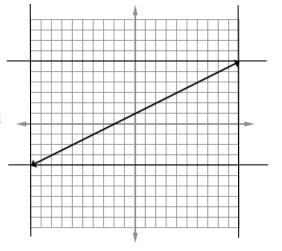
- 1. Examine the graph and notice its shape.
- 2. With a ruler, draw vertical and horizontal lines to enclose the graph.
- 3. Notice the "ends" of the curve if they exist, and determine if there is a closed point, open point, or arrow.
- 4. Write the domain from the identified interval(s) on the x-axis.
- 5. Write the range from the identified interval(s) on the y-axis.

Example 1.

- Step 1. We notice that the graph is a circle.
- Step 2. With a ruler, we draw two vertical lines and two horizontal lines to enclose the graph. See the diagram below.
- Step 3. We note that there are no "ends" on this graph.

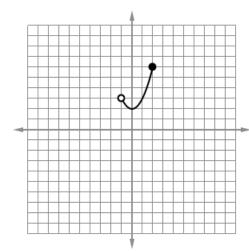

- Step 4. We see that the two vertical lines cross the x-axis at -2 and at 8. The domain is the interval [-2, 8].
- Step 5. Similarly, the two horizontal lines cross the y-axis at -1 and 9. The range is the interval [-1, 9].

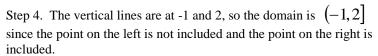
A Note About Notation: Square brackets [or] are used to indicate that the endpoint of an interval is included in the interval. Parentheses (or) are used to indicate that the endpoint of the interval is not included. There are eight types of intervals which are shown below along with their interpretation in inequality notation.

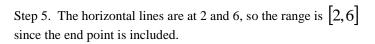

- [a,b] corresponds to $a \le x \le b$
- (a,b] corresponds to $a < x \le b$
- $[a,\infty)$ corresponds to $x \ge a$
- $(-\infty,b]$ corresponds to $x \le b$

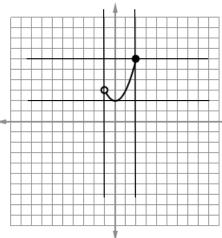
- [a,b) corresponds to $a \le x < b$
- (a,b) corresponds to a < x < b
- (a, ∞) corresponds to x > a
- $(-\infty,b)$ corresponds to x < b

Example 2.

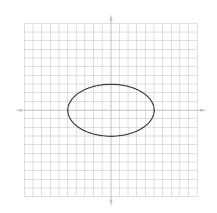

- Step 1. The relation graphed here is a line.
- Step 2. With a ruler, we draw two vertical lines and two horizontal lines to enclose the graph. See the diagram below.
- Step 3. We notice that the "ends" of the graph on the left and the right are marked arrows. We interpret this to mean that the graph continues to down as it goes left and the graph continues to go up as it goes right. It never stops.

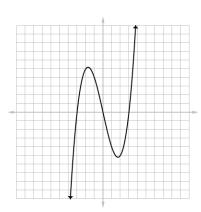

Step 4. The vertical lines are at the arrow heads, so the graph continues infinitely in both directions. We say that the domain is "all real numbers" and designate with this with a bold \mathbf{R} or by the interval $(-\infty,\infty)$.


Step 5. The horizontal lines are also at the arrow heads, so the graph continues infinitely in both directions. The range is also $(-\infty,\infty)$.


Example 3.

- Step 1. The relation graphed here is a portion of a curve.
- Step 2. With a ruler, we draw two vertical lines and two horizontal lines to enclose the graph. See the diagram below.
- Step 3. We notice that the "ends" of the graph on the left and the right are marked an open point on the left and a closed point on the right. We interpret the open point to mean that the graph does not include this point. The closed point indicates that it is part of the graph.

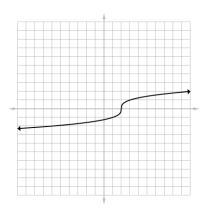



GRAPHICAL RELATIONS

Determine the domain and range of each of the relations graphed below. Write the domain and range in interval notation.

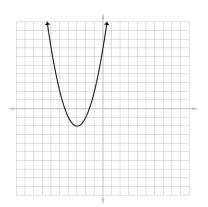
1.

2.

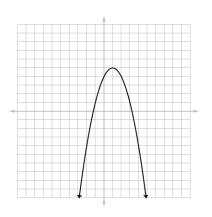

Domain:_____

Range:_____

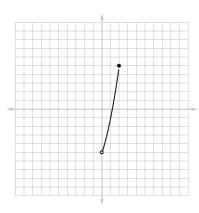
Domain:_____


Range:_____

3.


Range:__

4.



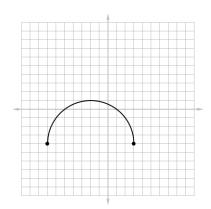
Range:___

5.

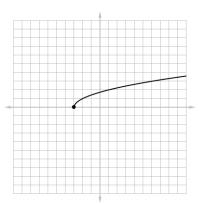
6.

Domain:_____

Domain:_____


Range:_____

Domain:_____


Domain:_____

Range:_____

7.

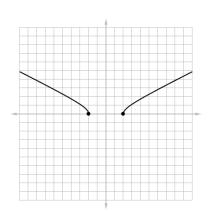
8.

Domain:_____

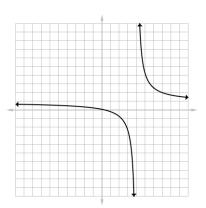
Domain:_____

Range:_____

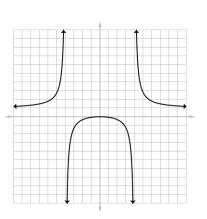
Range:_____

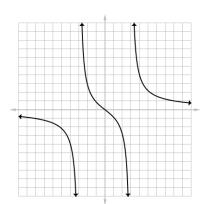

Domain:_____

Domain:_____


Range:_____

Range:_____


9.


10.

11.

12.

Domain:_____

Range:_____

Domain:_____

Range:_____

Function Domain

Α	Find the	domain	of each	of the	functions.	Write the	domain	in int	erval nota	tion
/ 1.	I mu mc	uomam	or cacir	or the	runctions.	WILL THE	uomam	III IIIU	ci vai nota	uon.

1.
$$y = 3x - 4$$

$$2. f(x) = 3x^2 + 6x - 4$$

$$y = 3x - 4$$
 2. $f(x) = 3x^2 + 6x - 4$ 3. $g(x) = \frac{3x - 2}{4}$

Domain:_____

Domain:_____

$$4. \qquad h(x) = x^3 - 1$$

5.
$$p(x) = \frac{1}{2}x^2 + \frac{3}{5}x^4$$

$$h(x) = x^3 - 1$$
 5. $p(x) = \frac{1}{2}x^2 + \frac{3}{5}x^4$ 6. $q(x) = x(2x - 3)(x + 4)$

Domain:_____

Domain:_____

Find the domain of each of the square root functions. Write the domain in interval В. notation.

$$7. f(x) = \sqrt{x-2}$$

8.
$$g(x) = \sqrt{x+7}$$
 9. $h(x) = \sqrt{5x-4}$

$$9. h(x) = \sqrt{5x - 4}$$

Domain:

10.
$$p(x) = \sqrt{x^2 + 1}$$

$$11. q(x) = \sqrt{\frac{1}{x}}$$

$$p(x) = \sqrt{x^2 + 1}$$
 11. $q(x) = \sqrt{\frac{1}{x}}$ 12. $t(x) = \sqrt{x^2 - 4}$

Domain:

Domain:

Domain:___

C. Find the domain of each of the rational functions. Write the domain in interval notation.

13.
$$f(x) = \frac{x+1}{x-2}$$

14.
$$g(x) = \frac{x-5}{3x+4}$$

14.
$$g(x) = \frac{x-5}{3x+4}$$
 15. $h(x) = \frac{-7}{x(x+3)}$

16.
$$p(x) = \frac{x^2 + 3x + 2}{x^2 - 4}$$

17.
$$q(x) = \frac{3x+5}{x^2+9}$$

$$p(x) = \frac{x^2 + 3x + 2}{x^2 - 4}$$
 17. $q(x) = \frac{3x + 5}{x^2 + 9}$ 18. $t(x) = -3 - \frac{2x}{x + 1}$