
*The Connectivity of Mathematics to Science in Elementary School

Susan Cooper & Elif Safak Florida Gulf Coast University

National Council of Teachers of Mathematics 2017 Annual Meeting
San Antonio, TX

*Importance of Integration

- *Effects students' lives forever the long term positive impact
- *Helps students develop their confidence and ability in mathematics and science
- *Helps preparing students as competitive global citizens

*Crosscutting Concepts (NGSS)

- *Patterns
- *Cause & Effect
- *Scale, Proportion, and Quantity
- *Systems & System Models
- *Energy & Matter
- *Structure & Function
- *Stability & Change

*Science & Engineering Practices
(NGSS)

*Asking questions and Defining Problems

*Planning and Carrying Out Investigations

*Analyzing and Interpreting Data

*Developing and Using Models

*Constructing explanations and Designing Solutions

*Engaging in Argument from Evidence

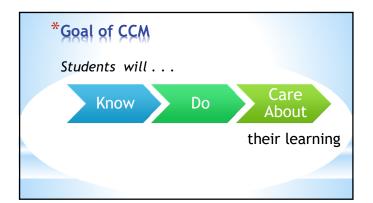
*Using Mathematics and Computational Thinking

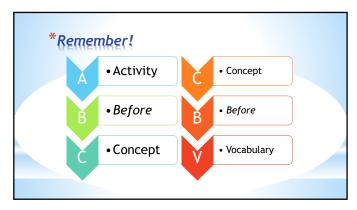
*Obtaining, Evaluating, and Communicating
Information

*Conceptual Change Model (CCM)

Developed to encourage genuine learning - bring about change with respect to a concept.

There are several conditions needed to be present in students to encourage this change:


- ✓ dissatisfaction with existing views,
- ✓ plausibility of new concept,
- ✓ attractiveness of new concept, and
- explanatory and predictive power of new concept.


*How CCM takes students through various steps to reach genuine learning?

- * Students are first asked to become aware of their own thinking.
- * They are then taken through a series of steps to have them confront their ideas and refine them if necessary.
- * Their new understanding is then used and finally asked to make connections to other subjects and their lives. (Stepans et al., 2005)

*Benefits

- * useful for helping students of diverse learning styles and capabilities
- * effective in establishing a more comfortable, collegial classroom atmosphere for more students.
- * effective in helping to identify and overcome specific problem areas
- * actively promotes both student and teacher metacognition. (Stepans et al., 2005. p. 41)

*Science and Math Integration: Snowflakes

- *NGSS
- *Disciplinary Core Idea: 2-PS1-1: Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
- *Crosscutting Concept: Patterns; Energy & Matter
- *Science and Engineering Practices: Constructing Explanations and Designing Solutions

*Science and Math Integration: Snowflakes

CCSS-MATH

*CCSS.MATH.CONTENT.2.GA.1: Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.

*Science and Math Integration: Snowflakes

CCSS-ELA

*<u>CCSS.ELA-LITERACY.RI.2.6:</u> Identify the main purpose of a text, including what the author wants to answer, explain, or describe.

*Snowflakes!

- *Have you ever seen snow? Where?
- *Have you examined individual snowflakes?

*Snowflakes!

CCM: Commit to an Outcome

*Carefully
examine the
snowflake
photos
provided. What
patterns do you
see? List them.

*Snowflakes!

CCM: Expose Ideas

*Share your ideas with your group. Choose one person to present your group's ideas to the class.

*Snowflakes! (continued)

CCM: Confront Ideas

- *How can you create paper snowflakes with similar properties to those you observed at the website?
- *Use the copy paper provided to create a paper snowflake.
- *Make sure your snowflake has properties like the ones at the website.

*Snowflakes! (continued)

CCM: Confront Ideas

- *Describe your snowflake in words in your science notebook.
- *Compare your snowflake with those made by others in your group.
- *Why are they different? Are any exactly the same?

*Snowflakes! (continued)

(CCM: Extend Ideas):

- How do you think snowflakes are classified?
- *Examine the snowflakes at the website provided.
- *How would you classify them? Describe each group you identified.
- *Do any of the snowflakes not fit the groups you made?
 *Let's read about Snowflake Bentley, the man who photographed
- snowflakes. Where do you think he lived?

 *As we read the story, think about problems he overcame in photographing snowflakes.
- *What happened to the snowflakes Snowflake Bentley photographed?

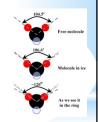
*Snowflakes! (continued)

(CCM: Extend Ideas):

- *How do you think snowflakes form?
- *What causes the special shapes?
- *Let's watch a video to find out more.

Beyond

What questions do you still have about snowflakes? How could you find the answers to your questions?


*Science and Math Integration

- *Snowflakes Lesson:
 - *While no two snowflakes are exactly the same, they are hexagonal shapes due to the molecular structure of ice.
 - *Each water molecule is made of two hydrogen atoms bonded to one oxygen atom.

Retrieved from http://www.storyofsnow.com/blog1.php/how-the-crystal-got-its-six

*Science and Math Integration

- *Snowflakes Lesson:
- *As water freezes, the molecules are forced to align themselves into a very particular structure a hexagonal lattice that is the basis for the six-sided snowflakes.
- *Electrical forces between hydrogens and lone pairs widens the opening angle of the water molecule to 106.6.
- *The molecule rotates up and the angle appears to be about 120.

Retrieved from http://www.storyofsnow.com/blog1.p ow-the-crystal-got-its-six

*Science and Math Integration: Pennies

- *NGSS
- *Disciplinary Core Idea: MS-PS1-3: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
- *Crosscutting Concepts: Patterns; Structure & Function
- *Science & Engineering Practices: Analyzing & Interpreting Data

*Science and Math Integration: Pennies

CCSS-MATH

*CCSS.MATH.CONTENT.6.SP.B.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

*Comparing Pennies

<u>On your own,</u> think of and write down your answer to the following situation.

I collected 30 pennies over the period of a few days. I was curious to see how consistent the penny manufacturing process was. I used a scale from the Chemistry Department to weigh my 30 pennies. Here are the data (in grams):

2.57	2.56	3.14	3.03	3.13	2.47	2.43	3.11	3.06	2.48
2.51	2.50	3.07	3.08	3.01	2.45	2.50	3.13	2.51	3.12
3.10	3.08	2.46	2.44	2.47	2.54	3.09	3.13	2.56	2.49

What can you tell about how consistent the penny manufacturing process was by just looking at the raw data?

*Comparing Pennies

- *Share your answer with others in your group. Ask a member of your group to write down and share everybody's ideas with the rest of the class.
- *Using the handout provided, fill in the Frequency/Relative Frequency Table and the Histogram.
- *Discuss your table and histogram with your group members.

*Comparing Pennies

Ask a member of your group to share the results and procedures of their discovery activity with the class.

Questions:

- Are there any situations/problems that would require the same process we used?
- 2. How does this connect with other problems we have done in class?

*Comparing Pennies

Questions:

- 1. Do any of you have questions concerning the process used to arrive at the answers?
- 2. Do you have comments or insight about how to apply what we did today?
- 3. What are some new questions or problems that relate to this situation you would like to explore?

*Conditions to consider for integrating mathematics and science?

- **1.**The lesson or unit should complement or support some aspect of instruction in the subject area.
- The lesson or unit should complement or support the content and/or learning skills in at least one other subject field.
- **3.** The lesson or unit should be constructed in a manner that encourages students to integrate and use the new knowledge and skills from several areas of competence. (Robinson, 1994).

*Best practices for teaching Math & Science

- use manipulatives/hands-on (make learning concrete and active)
- 2. use cooperative group work
- 3. use discussion and inquiry
- 4. use questioning and making conjectures
- 5. use justification of thinking (Zemelman, Daniels, & Hyde, 2005)

*Best practices for teaching Math & Science

- 6. use writing for thinking, feelings, and problem solving
- 7.use problem-solving approach to instruction, making content integration a part of instruction
- **8.** use technologies such as calculators and personal computers
- promote the role of the teacher to that of a facilitator of learning
- 10.use assessment as a part of instruction. (Zemelman, Daniels, & Hyde, 2005),

*Teaching Integrated Mathematics & Science

- 1. "Base integration on how students experience, organize, and think about science and math.
- Take advantage of patterns as children from the day they are born are looking at patterns and trying to make sense of the world.
- **3.**Collect and use data in problem-based integrated activities that invoke process skills.

(Furner & Kumar, 2007, p. 187)

*Teaching Integrated Mathematics & Science

- 1. Integrate where there is an overlapping content in math and science.
- 2.Be sensitive to what students believe and feel about math and science, their involvement and the confidence in their ability to do science and math.
- 3.Use instructional strategies that would bridge the gap between students' classroom experiences and real-life experiences outside the classroom."

(Furner & Kumar, 2007, p. 187)

*Discussion Questions

- 1. What do you do to integrate math and science in their classrooms?
- 2. What challenges do you face with when teaching integrated math and science lessons?

*Thank You!

Susan Cooper sjcooper@fgcu.edu

Elif Safak esafak@fgcu.edu

*References

- ✓ Furner, J.M. & Kumar, D.D. (2007). The mathematics and science integration argument: A stand for teacher education. *Eurasia Journal of Mathematics, Science, & Technology Education, 3*(3), 185-189.
 ✓ Posner, G., Strike, K., Hewson, P., & Getzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. *Science Education,* 66, 211-227.
- 66, 211-227.

 ✓ Stepans, J. I., Schmidt, D. L., Welsh, K. M., Reins, K. J., & Saigo, B.W. (2005). Teaching K-12 mathematics for understanding using the conceptual change model. St. Cloud, MN: Saiwood Publications.

 ✓ Strike, K., & Posner, G. (1985). A conceptual change view of learning and understanding. In L. West & A. Pines (Eds.), Cognitive structure and conceptual change. Orlando, FL: Academic Press.

 ✓ Zemelman, S., Daniels, H., and Hyde, A. (2005). Best practice: New standards for teaching and learning in America's school (3rd Edition). Portsmouth, NH: Heinemann.

 ✓ http://www.storyofsnow.com/blog1.php/how-the-crystal-got-its-six