IT'S NOT JUST A CARELESS MISTAKE!

Dr. Mary Pat Sjostrom

Winthrop University
Mathematics Education Program Director

mpshoemath@gmail.com

Overview

- O Introductions
 - What level do you teach?
 - Why did you choose to attend this presentation?
 - What do you perceive are common causes of student errors?
- Outline presentation
 - Student work samples
 - O Identify error patterns
 - O Plan remediation
 - One student's experience
 - Avoiding the development of errors
 - Future curricular directions

Incorrect Algorithm

 10.3×1.4

- O What was she thinking?
 - Lined up decimal points
 - o Answer: 144.2
- o Why?
 - Addition algorithm
- O What do we do?
 - o Estimation
 - o Does that make sense?

CCSS-M 5.NBT.

(Student work sample)

Incorrect Algorithm

Student work sample: Added fractions by adding numerators and denominators.

- Number sense!
- One-half + one-half cannot equal two-fourths because that's one-half!

Misconceptions of Division

- O Student work sample: 3.22 divided by 1.4
 - Quotient too small
 - O Answer .113
- O Student work sample: 22857 divided by 19
 - O Answer 123
 - Missed 0 in quotient
- O Student work sample: 22857 divided by 19
 - Answer 1203.1
 - O Subtraction error led to remainder of 10, put .1 in quotient

Inefficient Algorithm

 $9126 \div 676$

udent work sample:

epeatedly multiplied 676 by numbers: 2, 5, 8, 12, 13

ood understanding of inverse relationship of multiplication and division.

rseverance!

it very inefficient algorithm.

Final answer:

 $13\frac{388}{676}$

Close! 13.5

4.NBT.6 5.NBT.6

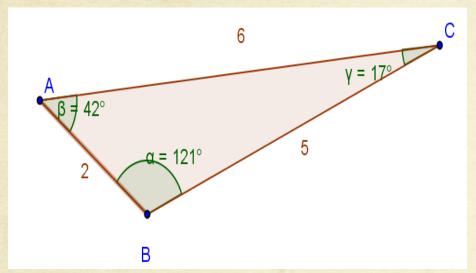
If at first you don't succeed...

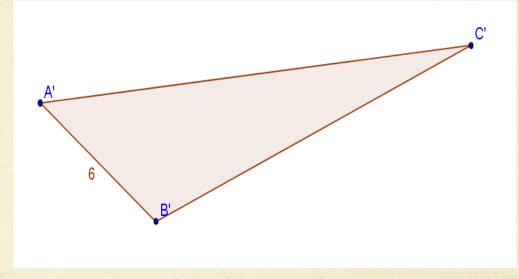
- O Student work sample: 763 x 87
 - O Solved three different times using standard algorithm.
 - O Got three different answers!

But how will he decide?

Misunderstanding in Algebra

$$0 8x - x = 8$$


$$0 \quad 4y - 4 = y$$


$$\circ$$
 3 x (a x b) = (3 x a) x (3 x b)

$$(x + y)^2 = x^2 + y^2$$

Overgeneralize

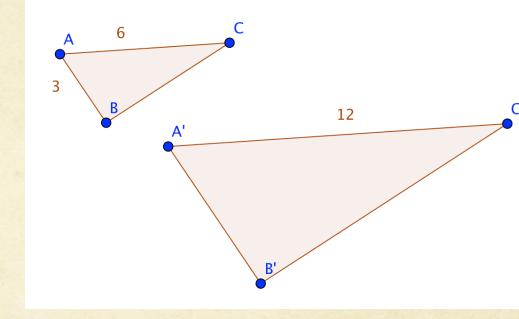
These triangles are similar. The measure of AB is 2 units; A'B' is 6 units.

The measure of AC is 6 units. Find the length of A'C'.

The measure of angle CAB is 42°. Find the measure of angle C'A'B'.

Error: Multiply angles by scale factor.

S-M 8.G.4


Overgeneralize

These triangles are similar. The measure of AC is 6 units; A'C' is 12 units.

The area of ABC is 7 units.

Find the area of A'B'C'.

or: Multiply area by scale factor rather by square of scale factor.

Problems with PEMDAS

- Student work sample)
- o Think order is always M then D, A then S
- Examine mnemonics from other countries
- o Should know order isn't rigid
- o Don't understand purpose of () and other grouping symbols (fraction bars)
- Students learn without understanding!

Language for Algorithms

- O Keep-change-change 16 (-5)
- O Keep-change-flip
- O Divide decimals by "moving the decimal point"
- O Cross-multiply When? Why?
- O Cross-cancel What does that even mean?

My Experience

- I teach preservice teachers: Early Childhood, Elementary, Special Education
- Mathematics for Teachers courses to develop deep understanding of the content, but it's difficult when students don't know the procedures they will have to teach.
- Test, remediate one-on-one or very small group, using manipulatives, emphasizing reasoning.
- Then identify and analyze errors, discuss and write notes for themselves on methods and concepts.
- Then practice and check.

Avoiding Error Development

- Take time to teach with understanding: conceptual understanding before procedural fluency
 - CCSS Fractions: 3rd grade focus on meaning, 4th on add/subtr like denom, 5th unlike
- Help students see connections.
 - O For example, Addition: join LIKE things
 - Ones, tens, hundreds
 - O Tenths, hundredths (don't just line up decimal points)
 - O Like denominators: 1 fifth + 3 fifths

Avoiding Error Development

- Have students develop algorithms research supports this.
- Have students analyze and discuss errors.
- Compare/contrast algorithms.
- Use mathematically correct language.
 - O CCSS Mathematical Practice 6: Attend to precision.
 - Mathematically proficient students try to communicate precisely to others.

Computational Skills

- O What's important?
 - Understanding
 - Reasoning
 - C Estimation
- As access to technology increases, what skills do students need?
 - Many young teachers don't know we used to find square roots by hand!
 - O Do we need to teach students to do long division by hand?
 - O What about other computational skills?

References

- Ashlock, R. B. (2006). Error Patterns in Computation. Pearson.
- Children Mathematics, 21 (1), 18-25.
- Karp, K., Bush, S., & Dougherty, B. (2015). 12 math rules that expire in the middle grades. *Mathematics Teaching in the Middle School*, 21 (4), 208-215...

Rate this presentation #592 on the conference app!

Search "NCTM" in your app store or follow the link at nctm.org/confapp to download

Join in the conversation! #NCTMannual

Dr. Mary Pat Sjostrom

mpshoemath@gmail.com

