
Get to Know the Research Companion to Principles to Actions

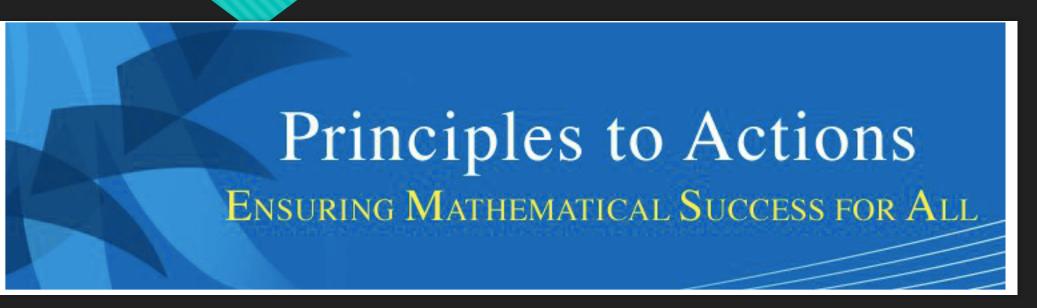
Thomas Hodges, Keith Leatham, Marcy Wood, and Denise Spangler

EnhancingClassroom Practice

with Research behind Principles to Actions

Edited by

Denise A. Spangler and Jeffrey J. Wanko



Principles to Actions (NCTM 2014)

- O 8 Teaching practices
 - O Goals
 - O Tasks
 - Representations
 - Questions
 - O Discourse
 - Procedural Fluency & Conceptual Understanding
 - Productive Struggle
 - Student Thinking

- 5 Essential Elements
 - Access & Equity
 - O Curriculum
 - Tools & Technology
 - O Assessment
 - O Professionalism

PtA Resources

Reflection Guide
http://www.nctm.org/Conferences-and-Professional-Development-Guides-Development-Guides-Quides-Quides
http://www.nctm.org/Conferences-and-Professional-Professional-Professional-Professional-Development-Guides-Quides-Quides-Quides-Principles-to-Actions_-Ensuring-Mathematical-Success-for-All/

Toolkit http://www.nctm.org/PtAToolkit/

Supporting Documents:

Slides

Facilitator Video Notes

Task - Addition Strings

Connections to CCSSM

Video Transcript

Effective Mathematics Teaching Practices

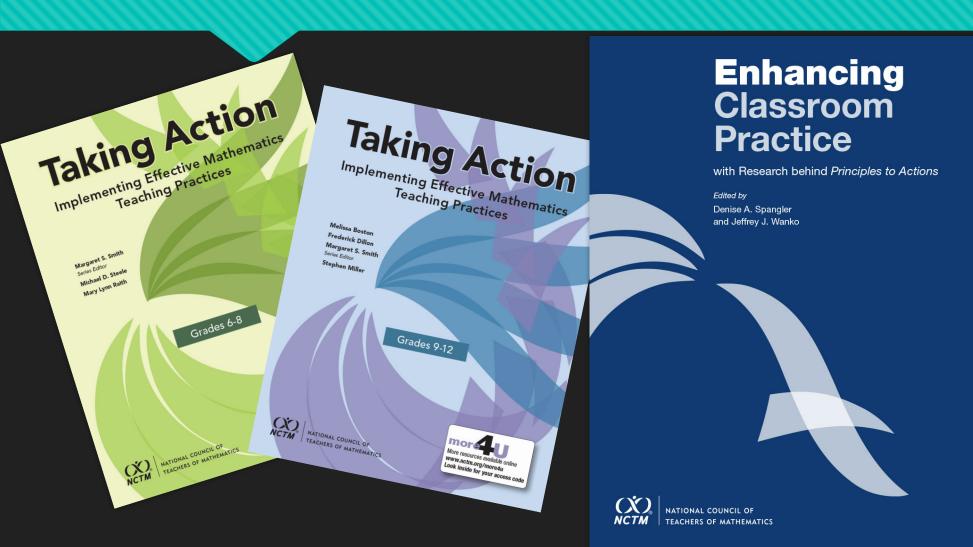
Lesson Guide - Addition Strings

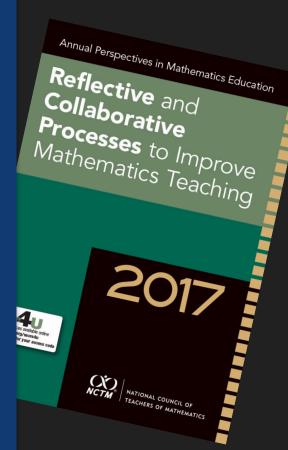
Using Identity and Agency to Frame Access and Equity

Description: Vignettes and the voices of students, teachers, and other school personnel are used to develop identity (beliefs about oneself, mathematics, etc.) and agency (the presentation of one's identity) as a framework for defining and addressing obstacles. Effective Teaching Practices support the cultivation of a positive identity and agency.

Grade Band: K-12

Guiding Principle: Equity and Access


Supporting Documents:



♣ Vignettes

Additional resources for PtA

Research Companion

O Purposes:

- O Summarize & synthesize research behind principles and elements
- Concrete examples
- Linking research and practice

O Audiences

- Inservice teachers
- Preservice teachers
- School and district leaders
- Mathematics teacher educators (instructional coaches, professional developers, universitybased)

Principles to Actions (NCTM 2014)

- O 8 Teaching practices
 - O Goals
 - O Tasks
 - O Representations (Hodges)
 - O Questions (Wood)
 - O Discourse
 - Procedural Fluency & Conceptual Understanding
 - Productive Struggle
 - Student Thinking

- 5 Essential Elements
 - O Access & Equity
 - O Curriculum
 - O Tools & Technology (Leatham)
 - Assessment
 - Professionalism

Purpose of this session

- Share research behind 3 pieces of PtA
- Engage you in discussions about the pieces and the research

- OPtA frames representations in two key ways:
 - 1. Making connections among and with representational tools
 - 2. Deepening students' mathematical understanding

- O Key issues we attended to in crafting the chapter:
 - What are the obligations of the teacher in creating a classroom with rich representational use?
 - What aspects of student work does one attend to when attempting to build cohesion and depth?

- O Differentiating between model of and model for
 - Distinction between models that are developed as a representation of a problem situation and those that have become generalized tools for solving problems
 - Seeing representation use as a part of a system of connected ways of seeing and reasoning in a problem situation
- Curriculum development with and for children
 - Selecting tasks that
 - Reconcile representation use
 - O Build the "floating capacity"
 - O Highlight (lack of) generalizability of particular strategies

- Challenges in the use of representations
 - Making sense of students' underlying thinking in their representational choices and connections
 - Expectations related to curricular fidelity and testing
 - Inconsistent orientations towards teaching and learning mathematics may privilege some representation (particularly symbolic) over others

Posing Purposeful Questions

- Questions that
 - Odeepen students' understanding of mathematics
 - Oprovide information about mathematical thinking

Questions we ask

- Cathering information
- Probing thinking
- Making the mathematics visible
- Encouraging reflection and justification

Questioning Sequences

- OFunneling getting students to a particular place
- Focusing drawing attention to mathematical ideas

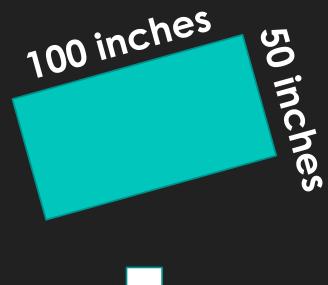
Transcript

- O How many square tiles, 5 inches on a side, does it take to cover a rectangular area that is 50 inches wide and 100 inches long?
- Notice types of questions, question sequence, and opportunities for student thinking.

Mr. M: Let's pretend that this is a hundred inches long and this is going to be fifty inches this way... So if this was a tile and it was five inches on each side, what would the measurement be on this side?

Carla: Five

Mr. M: How about this side?


Carla: Five

Mr. M: This side?

Carla: Five

Mr. M: And this side?

Carla: Five

Mr. M: It's five on all sides, right? So could we go ahead and if this was a hundred inches long, how many of these would it take if it was a hundred inches?

Carla: Twenty!

Mr. M: Twenty. Very good. So if it was fifty inches along this side, how many five inches, how many of these would it take to go along this side if it is fifty?

Carla: Ten!

Mr. M: So how many will it take along this side?

Carla: Twenty.

Mr. M: Twenty. How about this side?

Carla: Ten.

Mr. M: Ten. So how many would it take all together to fill it in and what are you going to do to figure that out?

Carla: Twenty times ten.

- What did you notice about types of questions?
- OAbout the questioning sequence?
- About opportunities for student thinking?
- Olf we could rewind this, where would you change Mr. M's questions?

Repurposing Our Questions

- We need to THINK before we ASK:
 - Ols this question essential for the thinking of my students?
 - OWhat is the minimum I can say to support, extend, or challenge student thinking?

Perspectives

Technology should "help students learn and make sense of mathematical ideas, reason mathematically, and communicate their mathematical thinking." (p. 78)

Mathematics

- solving problems
- developing algorithms
- generalizing and proving relationships
- sense making

Principles to

Chapter 11
What (Research on) Technology

What (Research on) Technology in the M Classroom Can and Cannot Do Keith R. Lestam. Britham Town University

An inthematics program the use of mathematical to thrology as essential resource rielp students learn and make sense of mathematical ideas, reason mathematically, and communicate to

ing an extract collection of algorithms, generalizations, and solution strategies in order to solve problems. The extract collection of the comparation Alternatively, from a creation studgetist, doing mathematics is consuming in through a comparation. Alternatively, from a creation studgetist, doing mathematics is solving profilems, developing all contains a creation studgetist, and proving substandings. From a creation studgetist, the sense of doing mathematics is increasing at the couple problems solving, resecoung, and

The deduction between communiques and crestions for the confidence of the communiques and crestion for their means to home and make institution. In what means to home and make institutions. Although forming on comparation on provide renders not reachers with immediate and appeared remarks for correct managers, (Daniel 1997), with this view of mathmental "to ordina student lowers school with a best amounted of a set of the communid of a set of the communid of a set of the composition, and formation says" (School and Charle 1991), a 30 Feesing on control, solvere, which challenging, can provide related to the communication of the communication of the control, solvere, which challenging can provide related to the communication of the communication and a set of the communication of the state to the comparation of the state to the despite the communication (understanding that is both despited and suntainfuls (Change 1987).

most eajoyable and sainfyling innilicratal experience one can have? (Bibbert and Warne 2003, p. 4). For decade, advocates for reform in unthamatical education have used arguments such as those persenedation have used arguments such as those persenedation have used arguments such as those persenedation on the control of the control of the site of the control of the control of the control of the sainty of the control of the control of the control of the manufacture of the control of the control of the control of the sainty of the control of the control of the control of the control of the sainty of the control of the control of the control of the control of the sainty of the control of the control of the control of the control of the sainty of the control o Technology • roproson

- representation
 - complex
 - dynamic
 - linked
- data
 - organize
 - explore
- communication
 - across the world
 - within the classroom

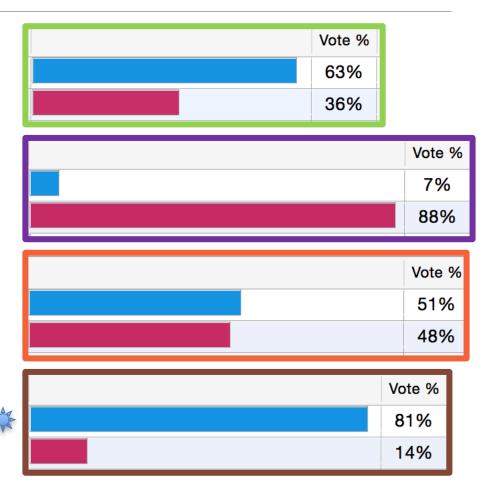
"The essence of doing mathematics is creating it." (p. 117)

Tools and Technology

Vision

Reality

- Access
- Teacher & Student Use


Possibility

Facilitating Mathematical Discourse

Respond, discuss, repeat

- i. Ask a question (yes/no works great for this)
- ii. Elicit an initial response
- iii. Elicit again after discussing with a neighbor

- iv. Elicit again after hearing just a few arguments for each position
- v. Elicit again after discussion based on pursuing particular arguments (highlighting and pressing on particular models or examples)

Reflection Cove

- **O**3:30-4:30 pm
- OCove 2 (one floor up)
- OJenny Bay-Williams (procedural fluency & conceptual understanding) in Cove 4

Questions? Comments?

Odspangle@uga.edu