

Marialuisa Di Stefano, Kristy Litster, and Beth MacDonald

Slide 2 of 16

Problem statement: background of studies on ELs and mathematics

- ELs are underrepresented in STEM-oriented fields.
- Multisemiotic nature of mathematics and its register.
- Interdependent relationship between mathematics and language.
- "Typical" experiences/English language proficiency may limit access to developing Algebraic concepts in mathematics.

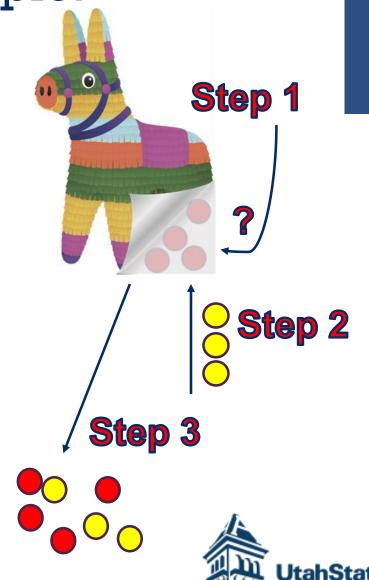
Slide 3 of 16

Focus on mental reversibility: inversion and compensation tasks

Mental reversibility: individual's underlying mental actions that allow a person to understand the relationship of an action and its effect. Relying on mental reversibility:

- Individuals can describe operatively **inverse relationships** (whereby one operation undoes the effect of another, e.g. 4+x=7 and 7-4=x);
- Individuals can describe **compensation relationships** between numbers (whereby an operation returns to an equivalent state, e.g. x+4-4=7-4).

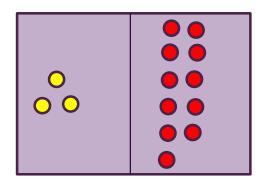
"Recognizing that addition and subtraction can undo each other has even been taken as evidence that a child is capable of reversing a mental action (reversibility), a defining characteristic of operational (truly logical) thinking" (as cited by Baroody & Lai, 2007, p. 132).

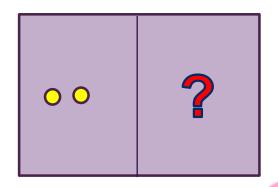

University

Inversion Task Example:

Piñata Task:

- 1 "I'm gonna put some candy in the piñata.
- 2 Later, I put 3 more pieces of candy in the piñata.
- Then we hit the piñata. Whack! And 7 pieces of candy fell out.

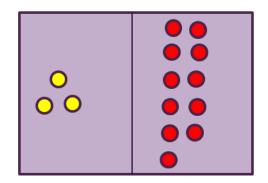

How many pieces of candy did I put in at the beginning?"

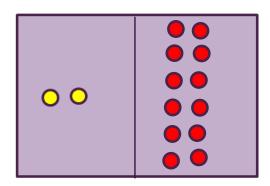


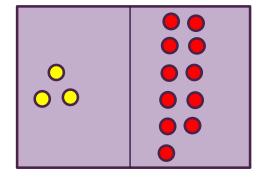
Compensation Task Example:

Your cupcake tray

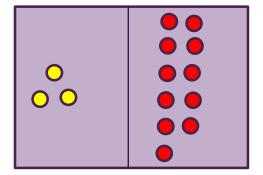
My cupcake tray

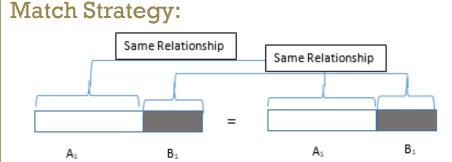

"How many cupcakes can we put in my empty slot, to make it so that we have the same number of cupcakes?"

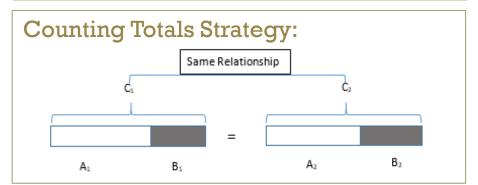

What is the Same???

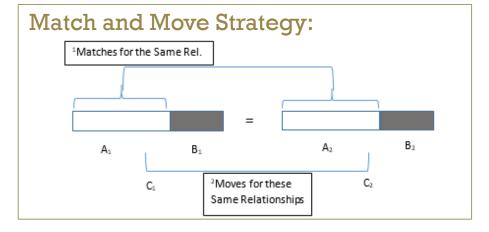

Your cupcake tray

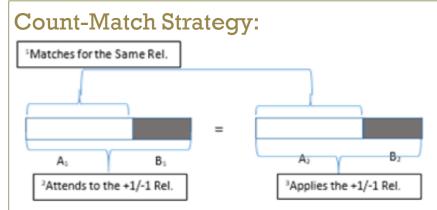
My cupcake tray

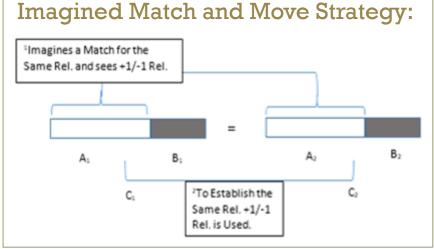









Slide 7 of 16


Compensation Strategy Development

Slide 8 of 16

Study setting and methodology: background of the study

- Larger inquiry-based intervention to promote children's construction of mental reversibility. Participants: 11 students, K-2, in the West Mountain Region of the U.S.
- Proceeding from the larger study, we focused on 7 of the 11 students, as they identified as being ELs:
 - How culturally embedded mathematics perception and English language proficiency levels interplay with children ability to solve inversion and compensation mathematics tasks.
 - How educators can facilitate the development of algebraic reasoning and address individual differences of ELs.
- Methods: case study; participant observation, field notes, students' interviews, and TEMA-3 scores; conceptual and retrospective analysis.

Slide 9 of 16

Culturally Responsive Teachers:

Connect mathematical concepts by connecting contexts with students' experiences and cultures

Teacher-Researcher: Remember how rocket ships count off? How they

count backwards like that?

Allen: [shakes his head to indicate he does not understand]

Teacher-Researcher: Like three-two-one blast off!

Allen: [nodding].

Teacher-Researcher: Yah? Can you do that when you start at ten for me?

Allen: [seems disengaged, he plays with his chair and seems not to

understand what he has been asked to do].

Teacher-Researcher: Like ten, nine, ...

Allen: I can't do.

Teacher-Researcher: you can do that; can you try?

Allen: Nope!

(Student's interview, PRE_03ScreeningInterview_part2_1, minute 03:07-03:31)

Story problems: the "cupcake tray" with Georgia

■ Part One:

a. Cultural reference: cupcakes trays contain 12 cupcakes.

■ Part Two:

- a. Conscious use of language when asking questions: similar vs. the same.
- b. Use of simpler instructions: "Do we have the same number of cupcakes?" "How many should you have <u>altogether</u> (vs. all together)."

Part Three:

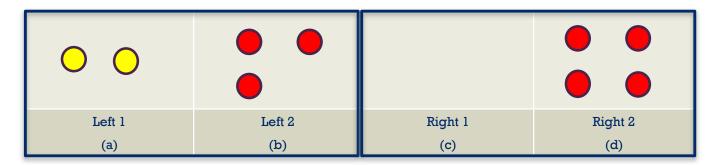
a. "How can I make mine the same as yours?"

(Teaching Sessions, Georgia_1_14_16a)

Slide 11 of 16

"Balance scale" activity with Allen under culturally relevant pedagogy lens

Part One:


- a. Cultural reference: unfamiliar with balance scale
- Part Two:
 - a. "What do I need here to make it balanced?"
 - b. "Which one is more?"
 - c. "Which one has more?"
- Part Three:
 - a. "We matched these two. They would be equal, wouldn't they?"
 - b. "Take one away"
- Part Four:
 - a. "So you want to take one off"
 - b. "It goes one away with that"
 - c. "If I take one away, I can't take it off altogether. I have to put it over here. It is my only way of doing it"

(Teaching Sessions, Allen_l_19_16a)

Language register: Phrasal Verbs

Phrasal verbs: one verb + one preposition.

Phrasal verbs are one of the most complex elements of the English language for ELs

Teacher-Researcher: No. So, what can we do to make these two equal?

Allen: Take one off. Take one away... [Indicating d]

Teacher-Researcher: Ok, well let me tell you this, watch. If I <u>take</u> one away, I can't <u>take it off</u> altogether I have to put it over here.

[Indicating c] Now, are these two matched?

Allen: [shakes head to indicate "no"]

(Teaching Sessions, Allen_1_19_16a, minute 1:52-5:43)

Mathematics register: Vocabulary

Language features that influenced mathematics development are: **Vocabulary** (35%), **Syntax** (33%); **Culture** (31%)

■ Take home message: teachers should be **linguistically responsive** by considering the language of instruction (e.g., use of phrasal verbs, vocabulary, sentence structure, questions used in mathematical tasks).

(Allen&Becka_3_22_16a, minutes 08:09-08:27)

Language and Cultural Changes

BEFORE

AFTER

Vocabulary: turn it around, balanced/equal.

- Vocabulary: rotate, the same number.
- Syntax: use of cognates from Spanish (e.g., remove, cancel).

Syntax: use of phrasal verbs (e.g., take off, take away)

Linguistically responsive approach to mathematics: use "you language."

Cultural reference: rocket ship.

Culturally Responsive: piñata, cupcake trays.

What teachers should do to help ELs

Linguistically Responsive

Language

- Use "you language".
- Limit the use of phrasal verbs and choose other more descriptive vocabulary (e.g., remove, delete, cancel, add, subtract, rotate).
- Ask students to explain their thinking with their own words.
- Limit or explain when words can be used as synonyms (e.g., equal/matched/balanced don't have the same meaning)

Culturally Responsive

Context

- Structure story problems on culturally relevant materials (e.g., piñata).
- Incorporate students personal experiences (e.g., cupcakes).
- Support uncommon children experiences with visual aids (e.g. balance scale, rocket ship).
- Know your students socio-cultural background. Knowledge is not static, and for this reason must be viewed critically.

Thank you!!!

Marialuisa Di Stefano, Ph.D. marialuisa.distefano@aggie mail.usu.edu

Kristy Litster, M.S. chemile@hotmail.com

Beth L. MacDonald, Ph.D. beth.macdonald@usu.edu

"Teaching kids to count is fine, but teaching them what counts is best."

-Bob Talbert

