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Consider this typical math-book problem:

A 5-meter ladder is leaning against a wall. The base of the ladder is 1 meter 
from the base of the wall. How high is the top of the ladder?

The point of this problem is to get students to use the Pythagorean Theorem. It 
demands that they combine geometry and algebra: geometry to recognize a right 
triangle and recall the appropriate formula, and algebra to solve that formula for 
the relevant side.

The activities in this book help make these connections. And they do it in a special 
way: through data. Students won’t calculate the height of the top of the ladder, 
they’ll measure it, with the ladder in different places. Here’s the basic idea:

1.	 We present a situation with some geometry in it.

2.	 Students take some measurements, record them in a data table, and plot 
them on a graph.

3.	 They figure out a mathematical function that has the same pattern as the 
data (this is a mathematical model of the data). 

4.	 They use the function to answer some sort of question about the situation.

The third step is the hard one. As you will see, there are two ways this can work:

❖❖ You use your understanding of the geometry and of the situation to come up 
with your model. 

❖❖ You find a model using the data, and use that model to help you understand 
the geometry of the situation.

You don’t have a 5-meter ladder, so instead of using a ladder, students tilt a chair 
against a wall (Tilting Chairs, page 104). They measure the distance from the wall 
to the bottom of the chair, and from the floor to the top of the chair—for differ-
ent tilts. Then they graph those distances and find a function that relates the two 
quantities. In a way, this is the reverse of the traditional ladder problem. Instead of 
going from the formula to a specific number, they go from numbers to the formula. 

That means that the point is not a particular answer, but rather a relationship. 

We hope the formulas and the geometry will make more sense because they’re 
about something real. 

Real data is messy and confusing. Still, learning to handle real data is important—
and it can be fun. This is partly because we will use technology to do a lot of the 
graphing in this book, and that will take the drudgery out of the process. 
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Modeling has become a big deal in mathematics education. People mean lots of 
different things by “modeling,” however, so let’s be clear where the activities in this 
book fit in.

Modeling mavens will often present a diagram of a “modeling cycle” like the one in 
the illustration. The details vary, but these diagrams capture the essence of model-
ing. I’ve added a dotted line that separates reality from symbolic math land. That 
transition—from reality to abstraction—is the vital “modeling step.” 

There are lots of ways to make models. In this book, we practice one of the most 
common ways to use models: we take measurements; we treat the measurements as 
data; and we model the data with mathematical functions. 

This is only one approach, and it’s only part of the cycle. For example, the activi-
ties in this book tell the students up front what variables are relevant. That’s very 
important, but here, students do not get to decide what to measure. 

That’s OK. When students do a bigger project, they’ll have to do that. But in this 
book, we want to focus on connecting geometry to data to graphs to functions, for 
two main reasons:

❖❖ In geometry, there’s not a lot of variability. The model functions are clear, 
they make sense, and you can make good predictions.  

❖❖ Students in intermediate algebra and beyond often have trouble solving 
problems in geometrical contexts. It can be hard to resurrect spatial under-
standing from your geometry course and connect it to symbolic expressions. 

Then we do two things, quite deliberately. First, we slow the process down and 
make it more concrete by having students measure. And second, instead of simply 
translating geometry into symbolic expressions, we have designed these activities 
to go all the way to functions—because the advanced courses are about functions.

In a way, it’s the long way around: when you’re more advanced, you look at a figure 
and say, well, the side distance, from R to the rung, is k times the rung length. But 
that may be too mysterious when you’re starting out. So instead we say, let’s mea-
sure the figure in a bunch of places. We’ll use those measurements as data. We’ll 
plot the data on a graph. Then we’ll find a function to fit the data. Huh! They’re 
proportional! Why would that be? OMG, the triangles are similar.

Or you might say, the triangles look similar, but are they really? If they are, cor-
responding sides are supposed to be proportional. What does that mean about the 
relationship between side and rung? Do the data fit this theory?

The point here is for students to see that math works, even when you approach it 
from different directions. Students get the same ideas in different guises: multiple 
perspectives, multiple representations. This makes these activities useful and chal-
lenging to students in Algebra 2, Precalculus, and beyond.

Modeling in This Book
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Book Pages. The activities are numbered. Each activity has a student page followed 
by one or more teacher pages. Teacher pages include “answers,” or at least a sample 
graph. Some activities also have templates, or other pages suitable for copying.

Instead of photocopying the student page, you could just project it, and have stu-
dents work in notebooks if you wish. We have also posted PDFs of the “template” 
pages at http://www.eeps.com/modelshop. Look for resources.

Materials. Students will need rulers and grid paper. Some activities need protrac-
tors. Activities about circles may need compasses, or a variety of round objects, 
e.g., jar lids, bicycle wheels, etc. Other activities need simple objects such as books 
or cups.

Technology. You need software or a device that lets you enter data and plot points, 
and then plot functions on the same graph. Fathom and Logger Pro are good 
examples of standalone software. Wolfram Alpha and Desmos are good examples 
of web-based tools. Then there are calculators: The TI-Nspire™’s data module 
is based on Fathom, so most Fathom techniques work, with modifications, on 
that device. That said, you can enter data into lists, and plot functions, on most 
graphing calculators. But there are too many models for us to include specific 
instructions. 

In this edition, pictures of example graphs are from Fathom and Desmos.

How These Activities Fit In. There are several ways to assign these activities.

First, I have used them as in-class activities. All students take measurements, enter 
data, and find models. The instructor circulates during this time, nudging and 
asking questions. Then, at the end, you lead a discussion to wrap up the experience, 
helping the students discuss what challenges they faced and what mathemat-
ics they learned. The teacher notes have suggestions for discussion topics or 
closing tasks. 

Second, the activities can be mostly homework. I have used them as weekly 
write-ups, kind of like the “problems of the week” that many teachers use. That way 
students have more time and have a chance to write mathematically. You can also 
give students the discussion questions as examples of issues they might address in 
their write-ups.

This second plan can be especially appealing. We look for ways to do larger pieces 
of work, like projects, but a more open-ended “math project” can be difficult and 
frustrating—for everybody. These activities, in contrast, help students develop 
their mathematical chops, but are contained. Since they’re smaller than projects, 
you can do more than one in a term, giving students a chance to improve—and 
giving you a chance to figure out what their work says about their understanding.

Nuts and Bolts 
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The student pages of this book often ask them to predict. We usually ask, “What 
will the relationship look like?” In these activities, that means, 

Before you take any measurements, think about the situation and sketch the 
graph you think you will get when you actually plot measurements. 

Prediction is hard for students. To make sure it gets done, one strategy is to collect 
the predictions the day before students begin to take measurements. 

These predictions serve several purposes:

❖❖ They help students think about the situation beforehand.

❖❖ They give students a chance to be surprised when their predictions 
are wrong.

❖❖ They give you, the teacher, a chance to make sure students understand what’s 
being asked.

Student predictions often start out being terrible, but they improve with practice. 
Help students decide what makes a good prediction. This can start with something 
as simple as “the graph has labeled axes” or “the graph shows realistic values.” As 
students get more experienced, they get better at following graphing conventions, 
estimating distances, and inferring the shape of relationships. Eventually, they can 
even start predicting equations for their models. 

As a teacher, you can help make prediction meaningful and effective.

❖❖ At the end, always ask students to compare their predictions to reality. If you 
do reflective writing, this is a good topic.

❖❖ Be sure to ask students what was right about their predictions. Only then ask 
how they could have made better ones. 

❖❖ Finally, ask about surprises: where did the graph turn out differently than 
they thought? 

Working with models and data is emerging as an important skill. There are 
important “habits of mind” to adopt that may never have been part of your math 
curriculum. Here is a partial list:

❖❖ Check limiting cases. It often helps to measure and reason about special cases, 
especially ones at the edges of possibility. The model you create must work 
properly at these special cases—and it’s easy to check that out.

So if you’re doing that Pythagorean ladder problem, your formula had better 
work when the ladder is up against the wall, and when the ladder is flat on 
the ground.

Prediction

Good Modeling Habits
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❖❖ Look at residuals. When you create a mathematical model to fit data, look at 
the residuals. If the model is good, there will be no pattern in the residuals—
they will look random—and they will be centered around zero.

Fathom or the N-spire will make a residual plot for you automatically. But 
even with Desmos or other tools, you can pay attention to whether there is a 
pattern in the way points are above or below your model function.

❖❖ Test your function. If you can, use your function to predict a measurement 
you have not yet made. It might be the next element in a pattern, or the 
length of some segment you have not yet drawn. 

❖❖ Enter only the data. Whenever possible, enter actual measurements, and let 
technology do all the calculations. For example, if you’re working with circles, 
and you actually measure the diameter, enter the diameter. Do not divide 
by two and enter the radius. Instead, make a new column for radius in your 
table and make the computer divide by two. 

❖❖ When working symbolically, leave your equations “in letters” as long as pos-
sible. More about this shortly.

You can introduce students to a wide variety of functions though their “parent” 
functions. These are prototypes for a whole family of functions. For example, 
quadratic functions are based on the simplest of all quadratics, ( ) 2f x x= . Sinu-
soids are based on xsin  and xcos .  You might begin learning about exponentials 
by looking at ( ) 2g x x= , but when you’re more sophisticated, you’ll probably use 

( )h x ex= as the root, parent function. 

If students learn the overall properties and characteristic shapes of these func-
tions, they can judge, from the shape of a graph of real data, what functions 
might fit. 

Of course, the parent function itself rarely fits. It might have the right general 
shape, but the details will be wrong. So you have to transform it: give it transla-
tions and dilations in x and/or y. 

This is not the place to describe all of them in detail, but just so you remember 
what I’m talking about, at left is a sine expression with transformations labeled.

The activities in this book let students apply their growing understanding of 
transformations. 

To see which types of functions apply to which activities, see Activities and Func-
tions on page 176.

“Parent” Functions 
and  Transformations

Asin(b(x h))+ k
vertical
stretch

horizontal
squish

horizontal
slide

vertical
slide
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To write a transformed function, you have to enhance the “parent” function by 
including additional values and operations. 

These values change the generic, vanilla parent function into one that applies to 
this particular situation. They’re parameters. Parameters characterize the function, 
so they’re the same for every case in the data set. 

Students often think of these numbers as “constants.” Calling them “parameters” 
may be new and confusing. So let’s talk about how to cope with parameters 
in this book. 

First coping strategy: whenever possible, express a parameter symbolically. Make 
it a letter (or a word), not a number. In the function in the margin, d, and L are 
parameters. Our software platforms, Desmos and Fathom, both express param-
eters this way.

If you use symbols for parameters, you can make your function come alive. Make 
sliders to represent the parameters. Sliders are a huge pedagogical win, because 
students can see, dynamically, how changing a parameter value affects the shape of 
the function. To fit a function, students vary the parameters by sliding them until 
the function fits the data. 

Many students will want to edit the numbers in an expression and re-draw the 
function. This is slower, less dynamic, and misses “kinesthetic” understanding.

Second coping strategy: Consciously distinguish these symbolic parameters from 
variables. In  f(x) = A sin x, A and x are both letters, but A controls the shape and 
position of the function, whereas x goes on the axis. When you measure and plot 
an individual data point, you use a variable—like x. Also: even though we urge stu-
dents to use letters other than x and y for variables, it sometimes helps students 
to think about which of the symbols is the “x.” In contrast, a letter that could be a 
constant number, like A, is a parameter. 

Students should be aware, though, that in some problems, parameters and vari-
ables change roles. In a problem where you calculate m and b (slope and intercept) 
for a linear relationship, those parameters briefly become variables.

Finally: Always look for meaning. A parameter’s value almost always means 
something about the situation. It could be a rate, or a special length, and area—it 
depends on teh situation and the function. You can’t always figure it out or express 
it, but whenever you can, you should. 

Parameters

Both of the graphs below try to fit the 
data with the model

 .

The model has two parameters: d and L.

In the top graph, d = 18 and L = 16.4. 
In the bottom one, d = 24. A better fit!
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Occasionally you’ll come across a mathematical model with actual constants that 
are not parameters. In Cardboard Circles, for example, students weigh cardboard 
circles and compare the mass (grams) to the radius (centimeters). The relationship 
is quadratic:

( ) 2m r kr= .

This is fine, but we want meaning for our parameters, and it’s not obvious what k 
means. On the other hand, if we expressed it like this:

( ) 2m r k rπ= ,

now k is the area density of the cardboard in grams per square centimeter. It will 
have a different—smaller—value, but it has a clear meaning. The number π, in this 
case, is not a property of the particular situation. It’s a constant, not a parameter.

If we had measured diameter instead of radius, the formula would be

( ) ( / 2)2m r k Dπ= .

In this case, 2 is also a constant. The radius is always half the diameter, no matter 
what kind of cardboard we use. 

Traditionally, we put the independent variable (also called “explanatory” or 
“predictor”) on the horizontal x-axis, and the dependent, “response” variable on 
the vertical y-axis.

This works well when there is one response for every predictor, that is, when 
you can describe the relationship as a function. For example, in Cornbread Are 
Square, the radii of the circles are the predictors so they go on x; the areas are the 
responses so they go on y. Then the model is a function, specifically, ( ) 2f r rπ= . 

You can also think of it as the area depends on the radius (and not the other way 
around), so the area is the dependent variable.

Even so, these roles sometimes switch. Imagine an activity in which you crowd 
a bunch of people together and put a rope around them (this is an extension to 
Bundles on page 67). You want to know how the length of the rope depends on 
the number of people. If you add more people, it adds to the area they take up, and 
increases the circumference—the length of the rope. In this case, the circumfer-
ence (and radius) depend on area. We’d use the same 2A rπ=  relationship to 
understand the situation, but we could sensibly write it as 

r
A
π

=  or 2C Aπ=

(In the activity, you might substitute nα for A, where the parameter α is now the 
“effective area” of one person.)

Actual Constants

Which Variable 
Goes on Which Axis?
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Having students switch the axes and talk about the resulting graph is a great way 
to help them become more flexible about data and the meaning of graphs. Of 
course, switching the axes for the data is one step, but how do you “flip” the func-
tion? Aha! This is a terrific chance to talk about inverse functions. We have noted 
this explicitly in a few activities, but it’s true everywhere. Also, be alert for issues 
of domain and range. When you have real data from geometry, restrictions happen 
naturally—all the time. 

How accurately do you have to draw and measure to make these activities work? 
Not all that accurately, but even college students may surprise you with flagrantly 
wrong diagrams and measurements. Angles are especially hard, but even distances 
can be problematic. A junior in high school should be able to measure the length of 
a segment to within about a millimeter, but some will still, for example, measure 
from the physical end of the ruler rather than from the “0” marking.

So turn this into an opportunity! Students can usually get something that kinda-
sorta-mostly works, but you can challenge them to measure accurately enough that 
it clearly-most-sincerely works. 

Does this mean they have to (gasp) re-measure as many as ten or twelve line seg-
ments? And re-enter them into a computer? Yes. They’ll live.

About Precision
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In this activity, you will relate the numbers on the opposite sides of your ruler to one another.

What to Do
Take a traditional U.S. student ruler—the kind with inches on one side and centimeters on the other. For at 
least seven spots on the ruler, record what numbers are opposite each other.

Do not convert the units! Simply record what numbers are opposite. For example, in the illustration, 8 (inches) 
is just about opposite 10.1 (centimeters).

How will inches be related to centimeters? 

❏❏ Predict: What will the relationship will look like? Sketch the graph you think you will get:

5.	 Opposite Sides of the Ruler

❏❏ Record at least seven measurements of centimeters and inches. 
For each measurement, pick a spot on the ruler and record the 
numbers from the two sides of the ruler.

❏❏  Plot centimeters (on the vertical axis) against inches.

❏❏ Find and explain a mathematical function that fits the points. 
Be sure you can explain the meaning of any parameters.

❏❏ Use your formula to calculate the centimeters for some inches 
you haven’t measured yet. What do you get? Check the ruler: is 
it right?

❏❏ Be sure you can explain why the form of your function 
makes sense.

❏❏ According to your formula, how many inches do you get for one 
meter (100 cm)? Look up the conversion between inches and 
meters and explain what happened.

inches centimeters
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In this activity, students compare the centimeter numbers to the inch numbers 
across their rulers. In the photo below, for example, see how 8 inches is kind of 
opposite 10 centimeters? That’s one data point. 

For most rulers of this type, the inch and centimeter  scales run in opposite direc-
tions. This means that although the relationship will be linear, larger numbers on 
one scale will match up with smaller numbers on the other, giving a negative slope.

Here are some important questions for discussion:

❖❖ What goes on the y axis?

❖❖ What are the limiting cases? Why are they important?

❖❖ If you find a number outside the regular domain, such as a point 
with inches = 15, what could it mean?

If you use Fathom, some students will get a slope of about –2.54, some get a slope 
of –1.0, and some get a slope of –0.393. What’s happening? This turns out to be in 
interestingly deep question. 

In the top illustration, the slope value means that there are 2.54 centimeters in one 
inch. But look at the bottom illustration. It’s the same data (minus a few points) 
but now the slope is –1. The data even have the same values.

How can the data have the same numbers and the computer gives you a different slope?

It’s because in the bottom example, the student entered the data with units. 
Let’s compute the slope in the top example between the two endpoints, which 
are (0, 30.5) and (12,0): we get (0 – 30.5)/(12 – 0), or 2.54. But in the bottom 
example, the same calculation has units, so we get

m=
−

−
= −

( . )
( )

.0 30 5
12 0

2 54cm cm
in in

cm
1in .

But 2.54 cm is the same as 1 inch, so the value of the fraction is 1.0, and the slope 
is –1. The first example relates the numbers, but the second relates the distances. Let 
that sink in!

The Units Issue (Fathom)

Two illustrations showing typical 
results. Both show least-squares 
lines. In the top one, students 
just entered numbers. In the 
bottom, they entered numbers 
with units.

Opposite Sides of the Ruler • Instructor Notes
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In this activity, you’ll study the angles in an isosceles triangle. 

What to Do
Make some isosceles triangles. Your instructor will tell you what tools to use. But if 
you’re doing this on your own, you could just draw the triangles freehand, as accurately 
as you can “by eye.”

You will need a protractor to measure the angles.

❏❏ Sketch some isosceles triangles, as large as is practical given your paper. Sketch 
a variety—some with small (acute) vertex angles, and others with large (obtuse) 
vertex angles. You need at least five triangles.

❏❏ Label each triangle with a number, and label the vertices A, B, and C, where A is the vertex—the point 
where the two like sides come together. 

❏❏ Measure all the angles. Write their values in the angles, and record them in a table. The column 
headings should be number, A, B, and C. (The number of the triangle is number.)

How will A, B, and C be related? 

❏❏ Predict: What do you think the relationship will look like? Since you have three variables instead of two, 
give some thought to the best ways to express your prediction. It may be that you have more than one 
graph.

❏❏ Sketch the graph(s) you expect to get here: 
 
 
 
 
 
 
 
 
 
 
 
 

❏❏ Find and explain mathematical functions that fit the points. Be sure you can explain the meanings of 
any parameters. For example, if your equations have any coefficients, why do they have to have the 
values they do?

❏❏ Test your predictions: how good were they? How well do the data support what you claimed?

Explore: if you drew your figures freehand, without a ruler, what difference would it have made if you had 
been able to make your triangles perfect? 

A

B
C

vertex angle

base angles

8.	 Isosceles Angles
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Isosceles Angles • Instructor Notes

This activity is about the angles in triangles. Students create a variety of isosceles 
triangles. They measure A, the vertex angle, and B and C, the two base angles. 

Many students know that A + B + C = 180°, and that B = C. For those students, this 
is a perfect opportunity to make really good predictions. 

The extra, open-ended challenge in this task is to deal with three variables. If you 
make a graph, what do you put on the axes? One good strategy is to make two 
graphs: one with B against C and another with A against B or C. 

Some students may try to make a single graph that relates all three variables. This 
is an interesting challenge; if a students or a group seems to be getting bogged 
down, however, consider suggesting that they do something less ambitions (i.e., 
use two “normal” scatter plots). See if they want to pursue the 3-variable graph 
elsewhere—maybe as extra credit.

Some students may give up on graphs entirely and rely instead on formulas for 
their predictions. Their challenge will be to evaluate their predictions without a 
graph: how can they tell if their guess even has the right shape? It’s not impossible; 
for example, they might predict that the sum of the angles is 180°, and test the 
idea by adding the three angles and comparing. This is fine, but in the debriefing, 
ask the class what you get out of a graph (or a set of graphs) that you don’t get out 
of calculation. 

Many students are perplexed by the graphs they get. It could be that these graphs 
do not immediately “look” like the relationships—at least not the way they usually 
think of them.

This is a great chance to connect their spatial, geometrical understanding with 
their understanding of relationships expressed numerically, graphically, and 
symbolically.

Measuring angles well seems to be a challenge even for otherwise accom-
plished students. If your classroom is like many, you have a motley collection 
of protractors, and students are inexperienced. This activity gives them some 
needed practice. 

The biggest danger is angles slightly larger than 90°; if students record a 95° angle 
as 85°, it can mess up their data. (This can be a good thing if students see that 
there is something wrong with the point that doesn’t fit in the graph; then they 
can re-measure and fix the problem.)

A

B
C

vertex angle

base angles

Measuring Angles
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If all this open-endedness is too much for less-experienced students, you could 
simplify the task in two ways:

❖❖ Have students ignore angle A and study the relationship between B and C, 
that is, have them “discover” that the base angles of isosceles triangles are 
equal; or

❖❖ have students focus on the relationship between A and either B or C. Then 
they will find that A = 180 – 2B (or some equivalent expression).

You could also make students’ lives easier (but a little less fulfilling) by giving them 
a template to help them make their diagrams. See the Vertex Angles Diagram on 
page 154.

When many students get lines to fit their points, they will get functions like one 
from the next page:

B = –0.51 A + 89.

It is a sign of growing mathematical maturity to ask whether that 0.51 might really 
be 0.50, and (since it’s an angle) the 89 is really 90. 

Then the student should try out the function with the special numbers and see 
whether it still fits well.

❖❖ What are the limiting cases in this activity? Where do they appear 
on the graphs? 

❖❖ What is the slope on the graph of B against C? What significance does it have?

❖❖ What are the y-intercepts of your graphs? What do they mean?

❖❖ What are the x-intercepts of your graphs? What do they mean? 

❖❖ Are the constants (or parameters) in your equations close to any important 
numbers? If you used the important numbers instead, how far off would 
your lines be?

❖❖ If you plot A against B or C, what goes on the vertical axis? What function do 
you get? How does the function change if you put a different variable on the 
vertical axis?

Simplifying the Task

Recognizing Special Numbers

Discussion Questions

Isosceles Angles • More Instructor Notes
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In this example, the group has put A on the horizontal axis and plotted both B 
and C. They have not, however, looked at limiting cases (or measured five triangles 
as instructed!).

Here we have taken their same graph and put A on the vertical axis:

Notice the function in the bottom illustration. Instead of being approximately 
B = 90 – A/2, it’s A = 180 – 2B. Both are correct, but it’s easier to see why the second 
one is true. 

It’s interesting that both models are good: they fit the points well. But we actually 
prefer the A = version in most circumstances because it communicates better, and 
connects better to important geometrical concepts.

It’s even easier to see if you use algebra (gasp!) and rearrange it:

A + 2B = 180. 

Of course! Angles add to 180. Base angles are equal.

Results

Isosceles Angles • Still More Instructor Notes
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9.	 Triangle Ladder

In this activity, you’ll study the lengths of the “rungs” of a “triangle ladder.” 

What to Do
Make a triangle ladder!

❏❏ Sketch a triangle, a pretty big one, an a sheet of paper. Don’t use a ruler, but draw it carefully. Label the 
vertices P, Q, and R. It does not have to be a special triangle (e.g., isosceles). 

❏❏ Make at least five segments parallel to PQ  that extend from PR  to QR . These are the “rungs.”

❏❏ Measure and mark down the lengths of all the rungs.

The length of that rung will depend somehow on a measurement along the side of the triangle (that is, along 
PR  or QR ). 

❏❏ Decide what to use for your side distance. Write down, briefly but clearly, how to measure side. 
 
 

How will rung be related to side? 

❏❏ Predict: What do you think the relationship will look like? Sketch the graph you think you’ll get: 
 
 
 
 
 
 
 
 

❏❏ Record measurements of rung and side, and plot rung against side.

❏❏ Find and explain a mathematical function that fits the points. Be sure you can explain the meaning of 
any parameter.

❏❏ Explain why the form of your function makes sense. If you’ve studied geometry, you should be able to 
explain it using geometrical vocabulary.

❏❏ Test your function! Make a new rung, and measure side. Then use your formula to predict the rung 
length. Measure and check. How did you do?

❏❏ Find someone who had a different definition of side, and compare your two functions. Figure out how 
they’re related to each other. 

Explore: how much did it matter that you drew the diagram freehand, without a ruler?
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In this activity, students make a “triangle ladder” like the one in the illustration. 
They measure the lengths of the rungs of the ladder, and distances along the side. 

In theory, seeing the relationship is easy for any student who has studied similar 
triangles, but in practice it can be confusing. That’s why it’s so important to look at 
this utterly typical geometrical situation. Using data might give some students the 
perspective they need.

The problem is that it’s easiest to measure the distances between the ladder 
“rungs”—and those don’t have any particular relationship to the lengths of the 
rungs themselves. 

Instead, students have to see that the relevant distances are the total, cumulative 
distances, either from the vertex or from the base. If students measure from the 
vertex, they get a direct proportion. If they measure from the base, they get a 
linear relationship with an intercept (and the intercept is the length of the base). 

❖❖ How did you figure out what to measure for side?

❖❖ Why do some people have positive slopes and some have negative?

❖❖ What do the slopes mean? Could you figure out the slope simply by measur-
ing the big triangle? How?

❖❖ If you made both graphs (one with side measured from the vertex, and the 
other measured from the base), how would they be related?

❖❖ Which way of measuring side gives you a slope and intercept that you can 
explain more easily?

P

Q

R

side

rung

In this Desmos plot, the student 
measured side from the vertex 
R, along RP  to each rung. This is 
plotted as the x variable, which is 
Dside in the table. 

You can also see the function, 
y = kx, and the slider for k, 
showing a value of 0.72. Notice 
that the student has changed 
the limits of the slider from the 
default [–10, 10] to [0, 1]. Pre-
sumably the bigger limits made 
finding a good value too “chunky.”

Discussion Topics

Triangle Ladder • Instructor Notes



The Model Shop, Volume 1: Functions from Geometry • eeps media © 2016

47

Here is a student picture of such a ladder:

Below is a graph of data from this diagram. The student used fromP (P is a point 
on the base) instead of side, which is fine. Since they are measuring from the base 
instead of from the vertex, they get an intercept and a negative slope. 

Results

Triangle Ladder • More Instructor Notes
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This activity is about the heights and widths of paragraphs. All of the paragraphs have the same text and the 
same font size, but they have different widths. 

What to Do
The central question: How will height be related to width? 

❏❏ Predict: What do you think the relationship will look like? Look at the paragraphs, then actually sketch 
your prediction for the graph. Really. Axes and everything. 
 
 
 
 
 
 
 
 
 
 
 
 
 

❏❏ Measure the paragraphs with a ruler and record measurements of height and width. 
 
 
 
 
 
 
 
 
 
 

❏❏ Plot height against width. (Which one belongs on the vertical axis?)

❏❏ Find and explain a mathematical function that fits the points. Be sure you can explain the meaning of 
any parameter. 
 

❏❏ Be sure you can explain why the form of your function makes sense.

11.	 Paragraphs (Same Font Size)
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Paragraphs (Same Font Size) Handout

Each paragraph has the same text and 
font, but a different width. 

Measure these paragraphs to gather 
data. Measure height and width. Plot 
the data and find a function that fits as 
well as possible.

Yonder, by ever-brimming 
goblet’s rim, the warm 

waves blush like wine. The 
gold brow plumbs the blue. 
The diver sun—slow dived 
from noon—goes down; my 
soul mounts up! she wearies 
with her endless hill. Is, then, 
the crown too heavy that 
I wear? this Iron Crown of 
Lombardy. Yet is it bright with 
many a gem; I the wearer, 
see not its far flashings; but 
darkly feel that I wear that, 
that dazzlingly confounds. 
’Tis iron—that I know—not 
gold. ’Tis split, too—that I 
feel; the jagged edge galls me 
so, my brain seems to beat 
against the solid metal; aye, 
steel skull, mine; the sort that 
needs no helmet in the most 
brain-battering fight!

Yonder, by 
ever-

brimming 
goblet’s rim, 
the warm waves 
blush like wine. 
The gold brow 
plumbs the 
blue. The diver 
sun—slow 
dived from 
noon—goes 
down; my soul 
mounts up! she 
wearies with 
her endless 
hill. Is, then, 
the crown too 
heavy that 
I wear? this 
Iron Crown of 
Lombardy. Yet 
is it bright with 
many a gem; 
I the wearer, 
see not its far 
flashings; but 
darkly feel that 
I wear that, 
that dazzlingly 
confounds. 
’Tis iron—that 
I know—not 
gold. ’Tis split, 
too—that I feel; 
the jagged edge 
galls me so, my 
brain seems to 
beat against 
the solid metal; 
aye, steel skull, 
mine; the sort 
that needs no 
helmet in the 
most brain-
battering fight!

Yonder, by ever-brimming goblet’s rim, the warm waves blush like wine. The gold brow plumbs the blue. The diver sun—
slow dived from noon—goes down; my soul mounts up! she wearies with her endless hill. Is, then, the crown too heavy 

that I wear? this Iron Crown of Lombardy. Yet is it bright with many a gem; I the wearer, see not its far flashings; but darkly 
feel that I wear that, that dazzlingly confounds. ’Tis iron—that I know—not gold. ’Tis split, too—that I feel; the jagged 
edge galls me so, my brain seems to beat against the solid metal; aye, steel skull, mine; the sort that needs no helmet in the 
most brain-battering fight!

Yonder, by 
ever-brimming 

goblet’s rim, the 
warm waves blush 
like wine. The gold 
brow plumbs the 
blue. The diver 
sun—slow dived 
from noon—goes 
down; my soul 
mounts up! she 
wearies with her 
endless hill. Is, 
then, the crown too 
heavy that I wear? 
this Iron Crown 
of Lombardy. Yet 
is it bright with 
many a gem; I the 
wearer, see not its 
far flashings; but 
darkly feel that I 
wear that, that daz-
zlingly confounds. 
’Tis iron—that I 
know—not gold. 
’Tis split, too—that 
I feel; the jagged 
edge galls me so, my 
brain seems to beat 
against the solid 
metal; aye, steel 
skull, mine; the 
sort that needs no 
helmet in the most 
brain-battering 
fight!

Yonder, by ever-brimming goblet’s rim, the warm waves blush like wine. The gold brow plumbs the 
blue. The diver sun—slow dived from noon—goes down; my soul mounts up! she wearies with her 

endless hill. Is, then, the crown too heavy that I wear? this Iron Crown of Lombardy. Yet is it bright 
with many a gem; I the wearer, see not its far flashings; but darkly feel that I wear that, that dazzlingly 
confounds. ’Tis iron—that I know—not gold. ’Tis split, too—that I feel; the jagged edge galls me so, my 
brain seems to beat against the solid metal; aye, steel skull, mine; the sort that needs no helmet in the 
most brain-battering fight!

Yonder, by ever-brimming goblet’s rim, the warm waves blush like wine. The 
gold brow plumbs the blue. The diver sun—slow dived from noon—goes 

down; my soul mounts up! she wearies with her endless hill. Is, then, the crown 
too heavy that I wear? this Iron Crown of Lombardy. Yet is it bright with many a 
gem; I the wearer, see not its far flashings; but darkly feel that I wear that, that 
dazzlingly confounds. ’Tis iron—that I know—not gold. ’Tis split, too—that I 
feel; the jagged edge galls me so, my brain seems to beat against the solid metal; 
aye, steel skull, mine; the sort that needs no helmet in the most brain-battering 
fight!

Yonder, by ever-brimming goblet’s rim, the 
warm waves blush like wine. The gold brow 

plumbs the blue. The diver sun—slow dived 
from noon—goes down; my soul mounts up! 
she wearies with her endless hill. Is, then, the 
crown too heavy that I wear? this Iron Crown 
of Lombardy. Yet is it bright with many a gem; I 
the wearer, see not its far flashings; but darkly 
feel that I wear that, that dazzlingly confounds. 
’Tis iron—that I know—not gold. ’Tis split, 
too—that I feel; the jagged edge galls me so, my 
brain seems to beat against the solid metal; aye, 
steel skull, mine; the sort that needs no helmet 
in the most brain-battering fight!
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Paragraphs (Same Font Size) • Instructor Notes

Students get a page with seven paragraphs, all the same text, all the same font 
size—but different widths. 

This is a good introduction to nonlinear functions. It’s about a phenomenon every 
student has experienced: when you squish the margins, the paragraph gets taller. 

An example of pretty good data, with a function plotted. Here, K is about 31.

This activity uses simple materials: Paragraphs (Same Font Size) Handout 
on page 55 and rulers.

Explain the situation and show students the paragraphs. Have them predict what 
the graph will look like before they measure. Then they can enter data and find a 
good function to model it. 

Finally, compare their predictions to what they found and, most importantly, have 
a discussion about the form of the function. 

It’s not obvious to most students from the data that the function has this 1/x form. 
They will often suggest parabolas or exponentials.

But in fact, the form of the function makes sense. This hyperbola doesn’t just fit 
the points: it arises naturally from the situation. After all, each paragraph has the 
same text. Therefore the letters take up the same area. If you ignore the interesting 
problem of the word wrap, each rectangle has the same area. And if that’s the case, 
the height of the rectangle is

height = area
width ,

which is precisely the form that fits the data pretty well. And the parameter K in 
the illustration has a meaning: it’s the area.

Materials and Procedure

The Form of the Function
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Cool demo: Cut out each of the paragraphs so they’re rectangles. Now superimpose 
them so that their lower-left corners are in the same place. Now look at the upper-
right corners: they’re the graph!

❖❖ What decisions did you have to make about measuring the paragraphs?

❖❖ What goes on the vertical axis? Why?

❖❖ How was your prediction different from reality? How was it the same?

The amount of text in each line varies because of word wrap. This introduces some 
variability in the data, which is lovely because we want to give students plenty of 
experiences with models that don’t line up perfectly with the points. 

But it also lets advanced students take this to the next level. If you make a residual 
plot of the model, you’ll see that the first two points—the tallest paragraphs—
don’t fit the model as well as the rest. If you fit the last five, the first two don’t work 
so well, and if you split the difference you see a bowed trend. 

Why? They should figure this out, but I’ll tell you my theory: word wrap affects 
short lines more than long ones. And there are ways to characterize that effect, 
with another parameter, that make for a better model. I won’t spoil your fun 
any further.

If you use Fathom, and enter your measurements with units, you’ll probably get a 
#units incompatible# error for your function (though it will still plot). 

Ask: what units does K need so that you have cm on both sides? The answer, cm^2, 
helps with understanding. Put the units right after the slider’s value.

If you don’t use units (or you use Desmos), you never see the error, but you also 
don’t get the helpful realization that the parameter is in square centimeters.

Understanding though Scissors

Questions for Discussion

Word Wrap

Units in Fathom

Paragraphs (Same Font Size) • More Instructor Notes
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37.	 Vertex Angles

How is the vertex angle of an isosceles triangle related to the length of the base? That’s what you’ll be 
investigating in this activity. 

What to Do
First, you need to prepare some triangles:

❏❏ Draw a bunch of isosceles triangles. Make sure that all of the “same” 
sides are the same length for all of the triangles. 10 centimeters is 
probably a good length. Different triangles can share sides. But be 
sure to get a wide range of vertex angles. (What is the possible range 
of vertex angles?)

Now you are ready to measure angle (the size of each vertex angle) and the 
length of the opposite side (the base). The illustration shows two overlap-
ping isosceles triangles with angles and lengths measured.

How will length be related to angle? 

❏❏ Consider: What are the maximum and minimum 
values for length? What values of angle correspond 
to those lengths?

❏❏ Predict: What do you think the relationship will 
look like when you graph it? Sketch it at right:

❏❏ Record at least eight measurements of length and 
angle. Make sure angle varies widely.

❏❏ Plot length against angle. (Or angle against length. 
Which arrangement makes the most sense?)

❏❏ Find and explain a mathematical function that fits 
the points. Be sure you can explain the meaning of 
any parameter. 

❏❏ Test your function! Find an angle you didn’t use yet, and use your function to predict the length. Then 
make the triangle and check. How did you do?

❏❏ Be sure you can explain why the form of your function makes sense.

❏❏ Look back at your prediction graph. What did you get right? Were there any surprises?

30°

65°

5.2 cm

10.7 cm
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Vertex Angles • Instructor Notes

In this activity, students connect the ends of the spokes in the diagram (or one 
of their own construction; the only requirement is that the spokes be the same 
length). This makes isosceles triangles with different vertex angles. They are to 
study the relationship between the angles and the lengths of the “opposite” sides 
they have drawn.

As the diagram suggests, these triangles can overlap in order to make a wide 
variety of angles. 

Students will need centimeter rulers. If they construct their own triangles and do 
not use the diagram on page 154, they will also need protractors.

Results
Here are some good results, shown with a function and a residual plot:

If students do not see that the data look like a sine curve, but stretched out so 
that you get from 0 to 1 as the angle increases from 0 to 180 instead of from 0 to 
90, suggest that they fill in the rest of the circle. That is, suppose you had a vertex 
angle of greater than 180°—what would the length be? The length for 210°, for 
example, would be the same as the one for 150°. 

If students fill in the graph from 180° to 360°, it may look more obviously like half 
a sine wave.

30°

30°

15°
20°

25°

All radial segments are the same length.
You can make many isoscles triangles
with di�erent vertex angles.
The two dashed lines are examples 
of bases for 30° and 65°.

10°

50°
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The function arises naturally using soh-cah-toa trig. 

Draw the altitude of the isosceles triangle from its vertex to the base. This bisects 
the vertex angle, and splits the isosceles triangle into two right triangles whose 
hypotenuse is the length of the isosceles sides.

Now you can use trig to find the length of the base. In the illustration, the side 
lengths are a, and the vertex angle is theta. If the opposite side is c, we get

c = 2a sin(θ/2).

The amplitude of the sine (in our case, about 20 cm) is just twice the length of side 
a. That side length is a good candidate for a variable parameter, especially since 
copy machines often expand or shrink the image a little. That is, segments on the 
handout might not be 10 cm long. 

There is another approach. If students have seen the Law of Cosines, challenge 
them to use it, and then explain why the two functions are really the same. 
One explanation:

If we use the Law of Cosines, the relationship is

θ

θ

θ

= −

= −

= −

2 2 cos

2 (1 cos ), so

2(1 cos ).

2 2 2

2

c a a

a

c a

where a is the length of the leg and c is the length of the base, the side we want. We 
can use that to plot out model.

But we also know from above that c = 2asin(θ /2) .  

Squaring that and setting it equal to the expression for c2, above, we get

4a2 sin2 θ
2
= 2a2 1− cosθ( )

sin2 θ
2
= 1− cosθ

2

sin
θ
2
= ± 1− cosθ

2

which is a half-angle formula.

Explaining the Relationship

a

a

θ/2

a sin(θ/2) 

a sin(θ/2) 

Law of Cosines Approach

Vertex Angles • More Instructor Notes
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If students know about the Law of Sines, that yields a solution as well. Since the 
triangle is isosceles, if we know the vertex angle (and we do), we know all three 
angles. That means that

sin sin
, or

sin
sin

.
c a

c a
θ φ θ

φ
= =

Since (180 ) / 2 90 ( / 2)φ θ θ= °− = °− , we could write

sin
sin(90 / 2)

sin
cos( / 2)

c a a
θ
θ

θ
θ

=
−

= ,

which is ugly but effective. Students with trig-identity experience can show that 
this is the same as the other expressions. 

It’s wonderful that students can approach such a simple situation in such different 
ways. This is a great chance for students to tell one another about their solutions, 
and to work together to show that they’re really all the same.

Law of Sines Approach

a

a

θ

c

φ

φ

Vertex Angles • Even More Instructor Notes
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Vertex Angles Diagram

30°

30°

15°
20°

25°

All radial segments are the same length.
You can make many isoscles triangles
with di�erent vertex angles.
The two dashed lines are examples 
of bases for 30° and 65°.

10°

50°
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39.	 SAS Area

This activity is about triangle areas. You’ll start with two sides, of lengths 10 cm, and connect them at various 
angles. You’ll explore how the area of the triangle depends on the angle between the sides. 

What to Do
❏❏ Get a sheet of paper, a pencil, a ruler, and a protractor. 

❏❏ Draw a segment 10 cm long. From one of its endpoints, and in a different direction, make another 
segment the same length.

❏❏ Measure the angle between the two segments.

❏❏ Connect the “loose” ends of the two segments to make a triangle. (It’s isosceles.)

❏❏ Measure the area of the triangle. It’s probably not a right triangle, so you’ll have to decide on a base and 
make your best measurement for the triangle’s height. Then area is (base)(height)/2.

How will area be related to angle? 

You’ve measured one triangle. Soon, you’ll make more, using the same procedure. Always 10-cm sides, but 
different angles. 

❏❏ But first, predict: What will the relationship between area and angle look like? Sketch the graph you 
think you will find.  
 
 
 
 
 
 
 
 
 
 
 

❏❏ Now draw more triangles, each with two 10-cm sides. Record measurements of area and angle.

❏❏ Plot area against angle.

❏❏ Find and explain a mathematical function that fits the points. Be sure you can explain the meaning of 
any parameter. 

❏❏ Make a new triangle you haven’t measured before. Note its angle. Use your formula to predict its area. 
Measure and check. How did you do?

❏❏ Make another new triangle. This time, measure its area. Predict its angle. How did you do?

❏❏ Be sure you can explain why the symbolic form of your function makes sense.
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SAS Area • Instructor Notes

Students will need paper, rulers, and protractors.

The setup for this activity is exactly the same as for Vertex Angles on page 150, 
except that instead of finding a function to give us the length of the side opposite 
the vertex angle, students are finding the triangle’s area.

So you can use that same handout (Vertex Angles Diagram on page 154) with 
angles and spokes, or have students draw their own. If they draw their own, you 
may need to encourage them to make angles greater than 90°.

In either case, you may need to remind students how to find the area of a triangle. 
Since most triangles will not have right triangles, students will have to pick one 
side for the base and then find the height by eye. This will be accurate enough for 
this activity and give students good practice in measurement and in estimating 
right angles.

It’s great if students recognize that the area has to be zero at 0° and 180°; it means 
they’re looking at extreme cases. 

Those zeroes and the shape of the graph might prompt students to think that the 
area function has the form

( ) (180 ),Area kθ θ θ= °−

which is quadratic. Now suppose the largest triangle, at 90°, has an area of 50 
square centimeters. Then you can figure out k directly. You get a formula1 of

( )
50

8100
(180 ).Area θ θ θ= °−

This is a very intelligent line of reasoning, and leads to a function that resembles 
the data, as you can see at left. But there is an even better model.

You can compute the height using soh-cah-
toa trig. Using the diagram at right, the area is 

sin
2

A
ab θ

=

or, in our particular case, where a = b = 10,

50sinA θ=

Students will have to set their technology to give trig results in “degree” mode. The 
value of the coefficient for the model at left is 49.5.

1	 Good question for students: where did the 8100 come from?

area = 25

area = 45.3

30°

65°

Strong but Wrong
 

asin

a

b

The Right Answer
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It’s possible to get a good model with more effort, however. Some students feel the 
need to orient these isosceles triangles differently, especially if they have success-
fully completed Vertex Angles on page 150:

acos
2

c = 2asin
2

22

aa

If they use a diagram like the one in the figure, it can lead to a different formula for 
the area:

2
1
2

2 sin
2

cos
2

sin
2

cos
2

2A
bh

a a a
θ θ θ θ

= = × × =
,

which is correct but more complicated. 

Either approach works, but this is an chance to ask whether, even though both 
answers are correct, one might be better. What do we mean by a better formula? 

First, A = 1/2ab sin θ is simpler. It uses fewer symbols. It uses the angle θ—what we 
measured—rather than half the angle. One trig function instead of two. And it’s a 
lot easier to remember.

But second, it’s more general. It works with any triangle; you can do the activity even 
if the sides a and b aren’t the same.

This alternative area formula does, however, lead to a nice double-angle identity. 
Combining our two area formulas, setting x = θ/2, and simplifying, we get:

sin 2x = 2 sin x cos x.

A Tortuous Path

SAS Area • Instructor Notes
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In this student work, see 
how they made an intelligent 
but wrong prediction that 
the biggest area would be 
at 60°. The student also 
shows understanding about 
transformations in explaining 
why to use sine and not 
cosine; and terrific reasoning 
about the area growing and 
then falling, repeatedly, as the 
angle increases.

But do they show that they 
understand why the function 
is what it is? No. There is 
room for growth.

SAS Area • More Instructor Notes — and Student Work

❖❖ Which angle gives you the largest area?

❖❖ What should that area be?

❖❖ What is the domain of this relationship (assuming angle is on the x-axis)?

❖❖ What is the range?

❖❖ Why does the limit on the domain make sense?

❖❖ How would this be different if the two sides were different lengths? (Try it 
and see.)

❖❖ How does your function connect to the traditional Area = bh/2 formula?

❖❖ Try the quadratic model. Give at least two reasons why we should prefer the 
one with sine.

Discussion and Extension 
Questions
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This chart shows, for each activity, the “correct” 
functions students can use to model the data. There 
is much opportunity, however, for practicing other 
functions. For example, seeing data that are based on 
sinusoids, some students use quadratics. The chart 
also has icons indicating broad geometry topics.

Most terms in the chart are obvious, except: 

ˬˬ Root Pythagorean: The kind of square root 
relationship you get when you solve the 
Pythagorean Theorem, e.g., f x k x= −( ) 2 2.

ˬˬ Direct Quadratic: means f(x) = kx2 here.

ˬˬ Surprise: Experienced folks might not expect it 
to be this way.

ˬˬ △ triangles, ○ circles, □ area, ~ similarity

 

1	 A Sample Activity: Hypotenuse (p 14). 
Root Pythagorean. △

2	 Stack of Books (p 22). Direct proportion.
3	 Rolling Rolling Rolling (p 25). 

Direct proportion. ○
4	 Stack of Cups (p 28). Linear.
5	 Opposite Sides of the Ruler (p 31). 

Linear, negative slope.
6	 Pick’s Theorem (p 33). 

Linear, two input variables. △□

7	 Circumference (p 38). Direct proportion. ○
8	 Isosceles Angles (p 41). 

Linear, negative slope. △
9	 Triangle Ladder (p 45). 

Direct proportion, linear. △~
10	 ART and ACT (p 48). Direct proportion. △○

11	 Paragraphs (Same Font Size) (p 54). 
Inverse proportion. □

12	 Paragraphs (Different Font Size) (p 70). 
Direct Quadratic. □~

13	 Cornbread Are Square (p 58). 
Direct Quadratic. ○□

14	 Cardboard Squares (p 61). Direct Quadratic.□
15	 Cardboard Circles (p 64). 

Direct Quadratic. ○□

Activities and Functions
16	 Bundles (p 67). 

Direct Quadratic, square root. ○□

17	 Chord Star (p 73). Inverse proportion. ○~
18	 Chord Star 2 (p 76). 

Quadratic, opens down. ○
19	 Spiral 45 (p 80). Exponential. △~
20	 Spiral 20 (p 83). Exponential. △~
21	 Triangle Spiral (p 87). 

Surprise square root. △
22	 Golden Rectangles (p 90). 

Exponential decreasing.~
23	 Zeno the Frog (p 94). 

Exponential, approaching from below.
24	 Shaded Strips (p 97). 

Exponential, approaching from below. □~
25	 Do Fret (p 100). 

Exponential, approaching from below.
26	 Tilting Chairs (p 104). Root Pythagorean. △
27	 Shadowlands (p 108). Surprise rational. △
28	 Tinkertoy Stick Lengths (p 111). 

Complicated exponential. △
29	 Chord Gap (p 115). Rational. ○
30	 Triangle Folding (p 121). Surprise cubic. △□

31	 Toilet Paper Roll (p 124). Square root. ○□

32	 Maximum Box (p 131). Cubic. Volume.
33	 Vegetable Matter (p 134). 

Varies. Linear, cubic. ○
34	 Making a Cone (p 138). Root Pythagorean.○
35	 Filling a Cone (p 142). Cube root. △○

36	 Tangent (p 147). Tangent. △
37	 Vertex Angles (p 150). Sine, cosine,  

Law of Cosines square root. △
38	 Sines of the Times (p 155). Sine, Cosecant. △
39	 SAS Area (p 158). Sine, cosine. △□

40	 Small Ferris Wheel (p 162). 
Law of Cosines square root. △○

41	 Distance to Mars (p 167). 
Law of Cosines square root. △○

42	 Eccentric (p 172). 
Law of Cosines square root. △○


