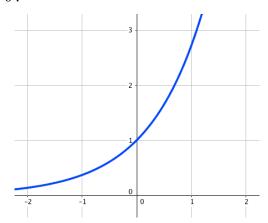
Polynomial Approximation Investigation

Consider the function $f(x) = e^x$ near x = 0. Since $f(0) = e^0 = 1$, the horizontal line $P_0(x) = 1$ could be used to approximate f(x) near x = 0.

1. Sketch a graph of $P_0(x)$ to visually represent this approximation near x = 0.



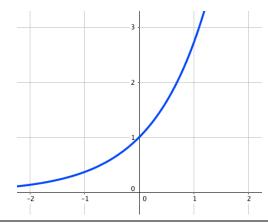
Of course, when using $P_0(x) = 1$ to approximate $f(x) = e^x$, the approximation gets bad fast as you move away from x = 0.

The tangent line approximation, $P_1(x)$, is the best first-degree approximation to f(x) near x = a because f(x) and $P_1(x)$ have the same rate of change at a. Therefore, $P_1(x)$ and f(x) share a common point and a common slope.

2. Write the equation of the tangent line $P_1(x)$ to $f(x) = e^x$ at x = 0.

Note that $P_1(x)$, the best firstdegree approximation to f(x)near x = 0, satisfies the following two conditions:

- (i) $P_{1}(0) = f(0)$
- (ii) P'(0) = f'(0)
- 3. Sketch a graph of $P_1(x)$ to visually represent this approximation near x = 0.



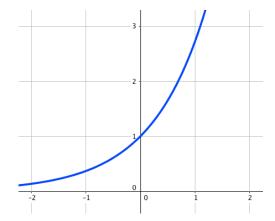
Does $P_1(x)$ appear to be better or worse than $P_0(x)$ at approximating $f(x) = e^x$ near x = 0? For a better approximation than a linear one, let's try a second-degree approximation, $P_2(x)$. We can approximate $f(x) = e^x$ near x = 0 with a parabola, rather than a straight line. In this case, $P_2(x)$ and f(x) share a common point, a common slope, and a common concavity.

4. Write the equation of $P_2(x) = A + Bx + Cx^2$.

This time, to make sure that the approximation is good, we stipulate the following:

- (i) $P_2(0) = f(0)$
- (ii) $P_2'(0) = f'(0)$
- (iii) $P_{2}''(0) = f''(0)$

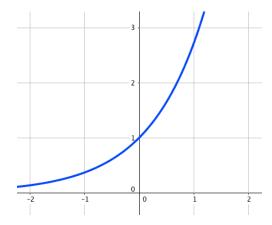
5. Sketch a graph of $P_2(x)$ to visually represent this approximation near x = 0.



Does $P_2(x)$ appear to be better or worse than $P_1(x)$ at approximating $f(x) = e^x$ near x = 0? 6. Write the equation of $P_3(x) = A + Bx + Cx^2 + Dx^3$ that best approximates $f(x) = e^x$ near x = 0.

What conditions must we satisfy in order to construct the best third-degree polynomial approximation to f(x) near x = 0?

7. Sketch a graph of $P_3(x)$ and f(x) to visually represent this approximation near x = 0.



8. To approximate a function by a cubic function $P_3(x)$ near x = a, it can be helpful to write $P_3(x)$ in the form:

$$P_3(x) = A + B(x-a) + C(x-a)^2 + D(x-a)^3$$

Show that this cubic function is:

$$P_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3$$