
 
Cellular automata are idealized models of complex systems 

–  Large network of simple components 
–  Limited communication among components 
–  No central control 
–  Complex dynamics from simple rules 
–  Capability of information processing / computation 
–  Can be evolved via GAs 

 



Terminology:   
–  Singular: “cellular automaton” (CA) 
–  Plural: “cellular automata” (CAs) 

 
Pronunciation:  

–  American: “cellular auTOmata”  
–  British: “cellular autoMAta” 

 



The Game of “Life”: The world’s most famous cellular automaton. 
 
Not really a game.   
 
Published in 1970 by British mathematician John Conway. via Martin 
Gardner’s “Mathematical Games” column in Scientific American.    

John Conway 

“Life”:  Inspired by John 
von Neumann’s models of life-like 
processes in cellular automata. 
 
Simple system that exhibits  
emergence and self-organization 



Black cell = “alive” 
White cell = “dead” 
 
Neighborhood of a cell: 
cell itself + 8 neighbors 
 
 
 
 
 
“World” wraps around 
at the edges (in this version) 
 
Rules: 
 
•  A living cell remains alive 

on the next time step 
only if two or three 
neighbors are alive.  
Otherwise it dies.  

 
•  A dead cell becomes alive 

on the next step 
only if exactly three 
neighbors are alive.   

 
 
 
 
 



Cellular automata were invented in the  
1940s by Stanislaw Ulam and  
John von Neumann to prove that  
self-reproduction is possible in machines  
(and to further link biology and computation). 
 
 
 

John von Neumann 
1903-1957 

Stanislaw Ulam 
1909-1984 

 



Applications of CAs 

•  Computer Science: architecture for massively parallel computation, 
and for molecular scale computation 

 
•  Complex Systems:   

–  Tool for modeling processes in physics, geology, chemistry, 
biology, economics, sociology, etc. 

–  Tool for studying abstract notions of self-organization and 
emergent computation in complex systems 

CAs are among the most common modeling tools in complex 
systems science! 
 



Rule:  
 

Elementary cellular automata 
 

One-dimensional, two states (black and white) 





Stephen Wolfram 



To define an ECA, fill in right side of arrows with black 
and white boxes: 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

Total:  2 × 2 × 2 × 2 × 2 × 
2 × 2 × 2  = 28  
= 256 possible ECAs 

Rule:  
 



Wolfram numbering:  

 
  

1 

1 

1 

0 

1 

1 

0 

0 

0      1      1      0      1      1       1      0 
  
  Interpret this as an integer in base 2: 

 
 
 
 
 
“Rule 110”   
 
 
 
 
 
 
 
 

(0!27)+ (1!26 )+ (1!25)+ (0!24 )
+ (1!23)+ (1!22 )+ (1!21)+ (0!20 )
=110

Rule:  
 



Wolfram numbering:  

 
  

0 

0 

0 

0 

0 

1 

1 

1 

1     1      0      0      0      0       0      1 
  
  Interpret this as an integer in base 2: 

 
 
 
 
 
“Rule 193”   
 
 
 
 
 
 
 
 

Rule:  
 

(1!27)+ (1!26 )+ (0!25)+ (0!24 )
+ (0!23)+ (0!22 )+ (0!21)+ (1!20 )
=128+ 64+1=193



“The Rule 30 automaton is the most surprising thing I’ve ever seen in 

science....It took me several years to absorb how important this was.  

But in the end, I realized that this one picture contains the clue to what’s 

perhaps the most long-standing mystery in all of science: where, in the 

end, the complexity of the natural world comes from.” 

−−Stephen Wolfram (Quoted in Forbes)  
 
Wolfram patented Rule 30’s use as a pseudo-random number generator! 



Wolfram’s Four Classes of CA Behavior 

Class 1: Almost all initial configurations relax 
after a transient period to the same fixed 
configuration. 

Class 2: Almost all initial configurations relax 
after a transient period to some fixed point or 
some periodic cycle of configurations, but 
which one depends on the initial configuration 
 

Class 3: Almost all initial configurations 
relax after a transient period to chaotic 
behavior. (The term ``chaotic'‘ here refers 
to apparently unpredictable space-time 
behavior.) 

Class 4: Some initial configurations result 
in complex localized structures, sometimes 
long-lived. 



Examples of complex, 
long-lived localized 
structures 

Rule 110 



CAs as dynamical systems 
 

(Analogy with logistic map) 



Logistic Map 
 
 
 
Deterministic 
 
Discrete time steps 
 
Continuous “state” (value of x is a 
real number) 
 
Dynamics: 
Fixed point --- periodic ---- chaos 
 
Control parameter: R  

Elementary Cellular Automata 
 
latticet+1 = f (latticet)  [f = ECA rule) 
 
Deterministic  
 
Discrete time steps 
 
Discrete state (value of lattice is 
sequence of “black” and “white”) 
 
Dynamics: 
Fixed point – periodic – chaos 
 
Control parameter: ? 

xt+1 = f (xt ) = R xt 1! xt( )



fixed point          periodic         chaotic    

0        R          4      



Langton’s Lambda parameter as a proposed 
control parameter for CAs 

Chris Langton 

For two-state (black and white) CAs:  
 
Lambda = fraction of black output states in  
CA rule table 
 
For example: 
 
 
 
 
 
 
 
 

   Lambda = 5/8   



Langton’s hypothesis: 

Lambda 
 

(for two-state CAs) 
 

Lambda is a better predictor of behavior for neighborhood size > 3 cells  

“Typical” CA behavior (after transients):  

fixed point     periodic   chaotic       periodic          fixed-point                

0                 1      



“Edge of Chaos” applet 

 http://math.hws.edu/xJava/CA/EdgeOfChaosCA.html 



From N. Packard,  
“Adaptation Toward the Edge of Chaos” 

1988 

Lambda 0 1 

Average Difference Spreading Rate vs. Lambda 
for two-state CAs with 7-cell neighborhoods 
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fixed point     periodic   chaotic       periodic          fixed-point                
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Summary 

•  CAs can be viewed as dynamical systems, with different attractors 
(fixed-point, periodic, chaotic, “edge of chaos”) 

•  These correspond to Wolfram’s four classes 
 
•  Langton’s Lambda parameter is one “control parameter” that 

(roughly) indicates what type of attractor to expect  

•  The Game of Life is a Class 4 CA! 

•  Wolfram hypothesized that Class 4 CAs are capable of “universal 
computation” 



Computation:  Information is  
–  input 
–  stored 
–  transferred 
–  combined (or “processed”) 
–  output 
  



Computation:  Information is  
–  input 
–  stored 
–  transferred 
–  combined (or “processed”) 
–  output 
  
Input                                                                        Output 
 
 

Universal Computation (= Programmable Computers): 
 
{Input,                                                                            
Program}                                                                      Output 
 

Program 

Universal 
Computer 

Only a small set of logical operations is needed to support 
universal computation! 



John von Neumann’s Self-Reproducing Automaton 

http://en.wikipedia.org/wiki/
File:Nobili_Pesavento_2reps.png 

Two dimensional cellular automaton, 29 states.  Universal 
replicator and computer.  



The Game of Life as a Universal Computer 

h#p://rendell-­‐a.c.org/gol/turing_js_r.gif	
  

1970:  Conway shows that 
Life can implement simple 
logic operations needed for  
universal computation, and  
sketches how a universal  
computer could be constructed. 
 
1990s:  Paul Rendall constructs 
universal computer in Life.  
 
 



Computation in ECAs 

Wolfram’s hypothesis: 
 

All class 4 CAs can support universal computation 
 
 

This hypothesis is hard to evaluate: 
 
•  No formal definition of class 4 CAs 
 
•  Hard to prove that something is capable of universal computation 



Rule 110 as a Universal Computer 

•  Proved by Matthew Cook, 2002 

•  Described in  



– Transfer of information: 
moving particles  

–  Integration of information 
from different spatial 
locations: particle 
collisions 

From	
  h#p://www.stephenwolfram.com/publica>ons/ar>cles/ca/86-­‐caappendix/16/text.html	
  



“Useful computation” in CAs 

•  Universal computation in CAs, while interesting and surprising, is 
not very practical.     
–  Too slow, too hard to program.  

•  CAs have been harnessed for more practical parallel computation 
(e.g. image processing).   

•  Next subunit – evolving CAs with GAs to perform such 
computations.   



Significance of CAs for Complex Systems 

 
•  Cellular automata can produce highly complex behavior from simple 

rules 

•  Natural complex systems can be modeled using cellular-automata-
like architectures 

•  CAs give an framework for understanding how complex dynamics 
can produce collective information processing in a “life-like” system.   

 





 Design a cellular automaton to decide whether or not the initial 
pattern has a majority of black cells. 

A computational task for cellular automata 



majority white majority black 

initial 

final 

How to design a CA to do this? 



We used cellular automata with 6 neighbors for each 
cell: 

Rule:  
 

... ... 

. . . 



Quiz 

•  how many neighborhoods? 

•  how many CAs 



Naive Solution:  Majority vote in each neighborhood 

Rule:  
 

... ... 

. . . 



Results of local majority voting CA:   
It doesn’t perform the task! 

Space 

Time 



•  Create a random population of candidate cellular automata rules. 
 
•  The “fitness” of each cellular automaton is how well it performs 

the task. 

•  The fittest cellular automata get to reproduce themselves, with 
mutations and crossovers. 

 
•  This process continues for many generations.  
 
 

Evolving cellular automata with genetic algorithms 



0 

0 

1 

1 

. . . 
. . . 

0 

The “DNA” of a cellular automaton is an encoding of its 
rule table: 



rule 1:      0010001100010010111100010100110111000... 
rule 2:      0001100110101011111111000011101001010... 
rule 3:      1111100010010101000000011100010010101... 
                                                    . 
                                                    . 
                                                    . 
 
rule 100:   0010111010000001111100000101001011111... 
                                      
 

    Create a random population of candidate 
cellular automata rules: 

 



 
•  For each rule, create the corresponding cellular automaton.  Run 

that cellular automaton on many initial configurations. 
 
•  Fitness of rule = fraction of correct classifications 
 
 
 
 

Calculating the Fitness of a Rule 



rule 1:      0010001100010010111100010100110111000...1 
 

. . 

. 

Create rule table 

For each cellular automaton rule in the population: 



Run corresponding cellular 
automaton on many random 
initial lattice configurations 

rule 1 rule table: 

. . 

. 

incorrect 

. . . . 

. . . . . . 

. 
. . . 

. 
correct 

. . . 

. . . . . . 

. 
. . . 

. 

. 



Run corresponding cellular 
automaton on many random 
initial lattice configurations 

rule 1 rule table: 

etc. 

. . 

. 

incorrect 

. . . . 

. . . . . . 

. 
. . . 

. 
correct 

. . . 

. . . . . . 

. 
. . . 

. 

. 



Run corresponding cellular 
automaton on many random 
initial lattice configurations 

rule 1 rule table: 

etc. 

Fitness of rule = fraction of correct classifications 

. . 

. 

incorrect 

. . . . 

. . . . . . 

. 
. . . 

. 
correct 

. . . 

. . . . . . 

. 
. . . 

. 

. 



rule 1:   0010001100010010111100010100110111000...  Fitness = 0.5 
rule 3:   1111100010010101000000011100010010101...  Fitness = 0.4 

    etc.  

rule 1:   0010001100010010111100010100110111000...  Fitness = 0.5 
rule 2:   0001100110101011111111000011101001010...  Fitness = 0.2 
rule 3:   1111100010010101000000011100010010101...  Fitness = 0.4 

        . 
        . 
        . 

 
rule 100:0010111010000001111100000101001011111...  Fitness = 0.0 
 

GA Population: 

Select fittest rules to reproduce 
themselves 



Parents: 
 

Children: 

Create new generation via crossover and mutation: 

rule 1:   0010001  100010010111100010100110111000...   
rule 3:   1111100  010010101000000011100010010101...   

0010001010010101000000011100010010101...   
 
1111100100010010111100010100110111000.. 

Mutate: 



Parents: 
 

Children: 

Create new generation via crossover and mutation: 

rule 1:   0010001  100010010111100010100110111000...   
rule 3:   1111100  010010101000000011100010010101...   

Continue this process until new generation is complete. 
Then start over with the new generation. 
 
Keep iterating for many generations. 

0010001010010001000000011100010010101...   
 
1111100100010010111100010100110111000.. 



majority black 

A cellular automaton evolved by  
the genetic algorithm 

majority white 



 How do we describe information 
processing in complex systems?  

 



Simple patterns 
filtered out 



“particles” 



“particles” laws of  
“particle physics” 



•  Level of particles can explain:  
–  Why one CA is fitter than another 
–  What mistakes are made 
–  How the GA produced the observed series of innovations 
 

•  Particles give an “information processing” description of the 
collective behavior 
 



How the genetic algorithm evolved 
cellular automata 

generation 8 generation 13 



How the genetic algorithm evolved 
cellular automata 

generation 17 generation 18 


