

Cellular automata are idealized models of complex systems

–  Large network of simple components
–  Limited communication among components
–  No central control
–  Complex dynamics from simple rules
–  Capability of information processing / computation
–  Can be evolved via GAs

Terminology:
–  Singular: “cellular automaton” (CA)
–  Plural: “cellular automata” (CAs)

Pronunciation:

–  American: “cellular auTOmata”
–  British: “cellular autoMAta”

The Game of “Life”: The world’s most famous cellular automaton.

Not really a game.

Published in 1970 by British mathematician John Conway. via Martin
Gardner’s “Mathematical Games” column in Scientific American.

John Conway

“Life”: Inspired by John
von Neumann’s models of life-like
processes in cellular automata.

Simple system that exhibits
emergence and self-organization

Black cell = “alive”
White cell = “dead”

Neighborhood of a cell:
cell itself + 8 neighbors

“World” wraps around
at the edges (in this version)

Rules:

•  A living cell remains alive

on the next time step
only if two or three
neighbors are alive.
Otherwise it dies.

•  A dead cell becomes alive

on the next step
only if exactly three
neighbors are alive.

Cellular automata were invented in the
1940s by Stanislaw Ulam and
John von Neumann to prove that
self-reproduction is possible in machines
(and to further link biology and computation).

John von Neumann
1903-1957

Stanislaw Ulam
1909-1984

Applications of CAs

•  Computer Science: architecture for massively parallel computation,
and for molecular scale computation

•  Complex Systems:

–  Tool for modeling processes in physics, geology, chemistry,
biology, economics, sociology, etc.

–  Tool for studying abstract notions of self-organization and
emergent computation in complex systems

CAs are among the most common modeling tools in complex
systems science!

Rule:

Elementary cellular automata

One-dimensional, two states (black and white)

Stephen Wolfram

To define an ECA, fill in right side of arrows with black
and white boxes:

2 possibilities

2 possibilities

2 possibilities

2 possibilities

2 possibilities

2 possibilities

2 possibilities

2 possibilities

Total: 2 × 2 × 2 × 2 × 2 ×
2 × 2 × 2 = 28
= 256 possible ECAs

Rule:

Wolfram numbering:

1

1

1

0

1

1

0

0

0 1 1 0 1 1 1 0

 Interpret this as an integer in base 2:

“Rule 110”

(0!27)+ (1!26)+ (1!25)+ (0!24)
+ (1!23)+ (1!22)+ (1!21)+ (0!20)
=110

Rule:

Wolfram numbering:

0

0

0

0

0

1

1

1

1 1 0 0 0 0 0 1

 Interpret this as an integer in base 2:

“Rule 193”

Rule:

(1!27)+ (1!26)+ (0!25)+ (0!24)
+ (0!23)+ (0!22)+ (0!21)+ (1!20)
=128+ 64+1=193

“The Rule 30 automaton is the most surprising thing I’ve ever seen in

science....It took me several years to absorb how important this was.

But in the end, I realized that this one picture contains the clue to what’s

perhaps the most long-standing mystery in all of science: where, in the

end, the complexity of the natural world comes from.”

−−Stephen Wolfram (Quoted in Forbes)

Wolfram patented Rule 30’s use as a pseudo-random number generator!

Wolfram’s Four Classes of CA Behavior

Class 1: Almost all initial configurations relax
after a transient period to the same fixed
configuration.

Class 2: Almost all initial configurations relax
after a transient period to some fixed point or
some periodic cycle of configurations, but
which one depends on the initial configuration

Class 3: Almost all initial configurations
relax after a transient period to chaotic
behavior. (The term ``chaotic'‘ here refers
to apparently unpredictable space-time
behavior.)

Class 4: Some initial configurations result
in complex localized structures, sometimes
long-lived.

Examples of complex,
long-lived localized
structures

Rule 110

CAs as dynamical systems

(Analogy with logistic map)

Logistic Map

Deterministic

Discrete time steps

Continuous “state” (value of x is a
real number)

Dynamics:
Fixed point --- periodic ---- chaos

Control parameter: R

Elementary Cellular Automata

latticet+1 = f (latticet) [f = ECA rule)

Deterministic

Discrete time steps

Discrete state (value of lattice is
sequence of “black” and “white”)

Dynamics:
Fixed point – periodic – chaos

Control parameter: ?

xt+1 = f (xt) = R xt 1! xt()

fixed point periodic chaotic

0 R 4

Langton’s Lambda parameter as a proposed
control parameter for CAs

Chris Langton

For two-state (black and white) CAs:

Lambda = fraction of black output states in
CA rule table

For example:

 Lambda = 5/8

Langton’s hypothesis:

Lambda

(for two-state CAs)

Lambda is a better predictor of behavior for neighborhood size > 3 cells

“Typical” CA behavior (after transients):

fixed point periodic chaotic periodic fixed-point

0 1

“Edge of Chaos” applet

 http://math.hws.edu/xJava/CA/EdgeOfChaosCA.html

From N. Packard,
“Adaptation Toward the Edge of Chaos”

1988

Lambda 0 1

Average Difference Spreading Rate vs. Lambda
for two-state CAs with 7-cell neighborhoods

D
iff

er
en

ce
 S

pr
ea

di
ng

 R
at

e
	

fixed point periodic chaotic periodic fixed-point

0 1

“Edge	
 of	
 chaos”	

“Edge	
 of	
 chaos”	

Summary

•  CAs can be viewed as dynamical systems, with different attractors
(fixed-point, periodic, chaotic, “edge of chaos”)

•  These correspond to Wolfram’s four classes

•  Langton’s Lambda parameter is one “control parameter” that

(roughly) indicates what type of attractor to expect

•  The Game of Life is a Class 4 CA!

•  Wolfram hypothesized that Class 4 CAs are capable of “universal
computation”

Computation: Information is
–  input
–  stored
–  transferred
–  combined (or “processed”)
–  output

Computation: Information is
–  input
–  stored
–  transferred
–  combined (or “processed”)
–  output

Input Output

Universal Computation (= Programmable Computers):

{Input,
Program} Output

Program

Universal
Computer

Only a small set of logical operations is needed to support
universal computation!

John von Neumann’s Self-Reproducing Automaton

http://en.wikipedia.org/wiki/
File:Nobili_Pesavento_2reps.png

Two dimensional cellular automaton, 29 states. Universal
replicator and computer.

The Game of Life as a Universal Computer

h#p://rendell-­‐a.c.org/gol/turing_js_r.gif	

1970: Conway shows that
Life can implement simple
logic operations needed for
universal computation, and
sketches how a universal
computer could be constructed.

1990s: Paul Rendall constructs
universal computer in Life.

Computation in ECAs

Wolfram’s hypothesis:

All class 4 CAs can support universal computation

This hypothesis is hard to evaluate:

•  No formal definition of class 4 CAs

•  Hard to prove that something is capable of universal computation

Rule 110 as a Universal Computer

•  Proved by Matthew Cook, 2002

•  Described in

– Transfer of information:
moving particles

–  Integration of information
from different spatial
locations: particle
collisions

From	
 h#p://www.stephenwolfram.com/publica>ons/ar>cles/ca/86-­‐caappendix/16/text.html	

“Useful computation” in CAs

•  Universal computation in CAs, while interesting and surprising, is
not very practical.
–  Too slow, too hard to program.

•  CAs have been harnessed for more practical parallel computation
(e.g. image processing).

•  Next subunit – evolving CAs with GAs to perform such
computations.

Significance of CAs for Complex Systems

•  Cellular automata can produce highly complex behavior from simple

rules

•  Natural complex systems can be modeled using cellular-automata-
like architectures

•  CAs give an framework for understanding how complex dynamics
can produce collective information processing in a “life-like” system.

 Design a cellular automaton to decide whether or not the initial
pattern has a majority of black cells.

A computational task for cellular automata

majority white majority black

initial

final

How to design a CA to do this?

We used cellular automata with 6 neighbors for each
cell:

Rule:

... ...

. . .

Quiz

•  how many neighborhoods?

•  how many CAs

Naive Solution: Majority vote in each neighborhood

Rule:

... ...

. . .

Results of local majority voting CA:
It doesn’t perform the task!

Space

Time

•  Create a random population of candidate cellular automata rules.

•  The “fitness” of each cellular automaton is how well it performs

the task.

•  The fittest cellular automata get to reproduce themselves, with
mutations and crossovers.

•  This process continues for many generations.

Evolving cellular automata with genetic algorithms

0

0

1

1

. . .
. . .

0

The “DNA” of a cellular automaton is an encoding of its
rule table:

rule 1: 0010001100010010111100010100110111000...
rule 2: 0001100110101011111111000011101001010...
rule 3: 1111100010010101000000011100010010101...
 .
 .
 .

rule 100: 0010111010000001111100000101001011111...

 Create a random population of candidate
cellular automata rules:

•  For each rule, create the corresponding cellular automaton. Run

that cellular automaton on many initial configurations.

•  Fitness of rule = fraction of correct classifications

Calculating the Fitness of a Rule

rule 1: 0010001100010010111100010100110111000...1

. .

.

Create rule table

For each cellular automaton rule in the population:

Run corresponding cellular
automaton on many random
initial lattice configurations

rule 1 rule table:

. .

.

incorrect

. . . .

.

.
. . .

.
correct

. . .

.

.
. . .

.

.

Run corresponding cellular
automaton on many random
initial lattice configurations

rule 1 rule table:

etc.

. .

.

incorrect

. . . .

.

.
. . .

.
correct

. . .

.

.
. . .

.

.

Run corresponding cellular
automaton on many random
initial lattice configurations

rule 1 rule table:

etc.

Fitness of rule = fraction of correct classifications

. .

.

incorrect

. . . .

.

.
. . .

.
correct

. . .

.

.
. . .

.

.

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5
rule 3: 1111100010010101000000011100010010101... Fitness = 0.4

 etc.

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5
rule 2: 0001100110101011111111000011101001010... Fitness = 0.2
rule 3: 1111100010010101000000011100010010101... Fitness = 0.4

 .
 .
 .

rule 100:0010111010000001111100000101001011111... Fitness = 0.0

GA Population:

Select fittest rules to reproduce
themselves

Parents:

Children:

Create new generation via crossover and mutation:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 010010101000000011100010010101...

0010001010010101000000011100010010101...

1111100100010010111100010100110111000..

Mutate:

Parents:

Children:

Create new generation via crossover and mutation:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 010010101000000011100010010101...

Continue this process until new generation is complete.
Then start over with the new generation.

Keep iterating for many generations.

0010001010010001000000011100010010101...

1111100100010010111100010100110111000..

majority black

A cellular automaton evolved by
the genetic algorithm

majority white

 How do we describe information
processing in complex systems?

Simple patterns
filtered out

“particles”

“particles” laws of
“particle physics”

•  Level of particles can explain:
–  Why one CA is fitter than another
–  What mistakes are made
–  How the GA produced the observed series of innovations

•  Particles give an “information processing” description of the
collective behavior

How the genetic algorithm evolved
cellular automata

generation 8 generation 13

How the genetic algorithm evolved
cellular automata

generation 17 generation 18

