
Functions
Overview

© 2018 Kris Jordan



Function Intuition: How-to Build a House

1. Site Preparation and Grading

2. Foundation Construction

3. Framing

4. Installation of windows and doors

5. Roofing

6. Siding

7. Rough electrical

8. Rough plumbing

9. ...

10. Now you have a house!

© Kris Jordan

1. Pre-build the 
outside frame in 8-
foot sections

2. Stand each 8-foot 
section of the 
frame up

3. Insert braces for 
support

4. Repeat steps 3 and 
4 until entire 
perimeter is 
complete

A Framing "Function"



Function DefinitionFunction Definition Overview

• A function definition is a subprogram

• Parameters are placeholders for inputs the function needs

• The function body is the algorithm, or sequence of steps, 
the function will follow when it is used
• The function body is a block of statements

• Any statement can be written inside the function body, including 
if-then-else, while loops, and so on

• A return statement inside a function body specifies the 
final value a function results in

* Defining a function is like writing down a recipe. The definition has no 
immediate result. It is not until you call a function or follow a recipe that its 
steps are actually carried out.

Parameters

Return 
Statement



Function Call Overview
1. A function call instructs the 

processor to carry out a function's 
definition.

2. Arguments are the actual input 
values. They are assigned to the 
function definition's parameter 
placeholders.

3. The processor leaves a bookmark at 
the function call and jumps into the 
function definition.

4. When the processor reaches the 
function's return statement, the 
returned result is substituted for 
the function call and the processor 
jumps back.

Function Call 
(Arguments)

Parameters

Return 
Statement

Function Definition

Returned Value



Example Setup

In VSCode:

1. Start the Development Server
• View Terminal
• npm run pull
• npm start

2. Open the File Explorer Pane
• Right click on the src folder

• Select "New folder"
• Name it: x-functions

• Right click on the x-functions folder
• Select "New file"
• Name it: functions-app.ts

3. In functions-app.ts, write out 
the code to the right. It has no 
errors, so review carefully if yours 
has any.

© Kris Jordan

import { print, promptNumber } from "introcs";

export let main = async () => {
let a = await promptNumber("a");
let b = await promptNumber("b");

// Function Call
let answer = max(a, b);

print(answer + " is greatest!");
};

// Function Definition
let max = (x: number, y: number): number => {

if (x > y) {
return x;

} else {
return y;

}
};

main();



Function Definition Syntax

let <name> = (<parameters>): <returnType> => {
<function body statements>

};

• We will define functions outside of the main function, typically following it

• Like variables, functions can be given a name.

• Parameters are special variable declarations. They are placeholders for the inputs a 
function needs.

• Return type specifies the data type the function will return.

• Statements in the body block run only when a function is called.



Function Definition Example

© Kris Jordan

let max = (x: number, y: number): number => {
if (x > y) {

return x;
} else {

return y;
}

};

Name
Return Type

The max function can be given two number
values and will return the larger of the two.

Return 
Statements

Body

Parameters



Function Call Syntax

<name>(<arguments>)

1. When a function call is encountered the processor drops a bookmark.

2. A function call's data type is its function definition's return type
For example: let answer: number = max(a, b);

Since the max function's return type is number, a function call to max can be assigned to 
the number variable answer.

3. When the processor reaches a function call, it follows a set of rules to jump 
over to the function call with input arguments and return back with a result.
We'll explore these rules in depth in upcoming lessons.

max(a, b)

Example:



What purpose do functions serve?

• Functions are a fundamental unit of process abstraction
• Learning to tie your shoe was process abstraction

• As a child, you struggled to learn the right series of steps
• Nowadays you can just "tie your shoe" without worrying about each step

• Defining a function is process abstraction
• Defining functions takes thoughtful effort to get the right series of steps
• Once correct, you can reuse your function by "calling" it, without worrying about its steps

• Functions help you break down and logically organize your programs

• Functions make it easy to reuse computations or sequences of steps
• Functions help you avoid repetitive, redundant code

© Kris Jordan


