
Function Literals in Environment Diagrams
and

Array's Filter/Map/Reduce Methods

Lecture 21 - Spring 2020

01| let main = async () => {
02| let input = [2, 3, 4];
03| let result = reduce(input, mul, 1);
04| print(result);
05| };
06|
07| let mul: Reducer<number, number> = (m, x) => m * x;
08|
09| let reduce = <T,U>(xs:T[], f:Reducer<T,U>, memo: U):U=>{
10| for (let i = 0; i < xs.length; i++) {
11| memo = f(memo, xs[i]);
12| }
13| return memo;
14| };
15|
16| main();

Trace an Environment Diagram

2. "Just for funcies" -- Given the code, draw an environment diagram at the
breakpoint. Once drawn, answer the questions on PollEv.com

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

interface Funcy {
(a: number, b: number): number;

}

export let main = async () => {
let a = 16;
let b = 2;
let c = justF((or, funcies) => or - funcies, b, a);
print(c);

};

let justF = (f:Funcy, a:number, b:number):number => {
return f(b / a, a);

};

main();

Array's filter, map, and reduce Methods

• Arrays have built-in methods

• Among other methods, arrays have three other built-in, higher-order
methods:

1. filter

2. map

3. reduce

Array's filter Method

• Every array of type T[] has a filter method.

• The filter method has a single parameter: a Predicate<T> of the same type T

• For example:
let a = [-1, 0, 1, 2];
let b = a.filter((x) => x > 0);
print(b); // Prints: 1, 2

• Calling the filter method on array a will return a new array of type T.
The filter method tests all elements in the original array using the Predicate<T>.
Elements that return true will be copied to the returned array.

Array's map Method

• Every array of type T[] has a map method.

• The map method has a single parameter: a Transform<T, U> of the same type T
• The map method will return an array of type U[]

• For example:
let a = ["one", "two", "three"];
let b = a.map((s) => s.length);
print(b); // Prints: 3, 3, 5

• Calling the map method on array a will return a new array of type U[].
The map method transforms all elements in the original array using the
Transform<T,U>.
All transformed elements are copied to the returned array in the same order.

Array's reduce Method

• Every array of type T[] has a reduce method.

• The reduce method has two parameters:
1. a Reducer<T, U> of the same type T
2. An initial memo ("memory" accumulator) value of type U

• For example:
let a = [1, 2, 3];
let b = a.reduce((memo, x) => memo + x, 0);
print(b); // Prints:6

• Calling the reduce method on array a will return a single value of type U. Starting with
the initial memo parameter, it will call the reducer with memo and each element in a
successively replacing memo's value with the reducer's returned value. The final memo
value is returned.

Hands-on: filter/map/reduce Pipeline
• Open 01-game-stats-app.ts

1. Assign to the filtered variable the result of calling the filter with the games
List and one of Predicate functions below:

2. Assign to the values variable, the result of calling map with the filtered List
and one of the Transform functions below:

3. Assign to the result variable, the result of calling reduce with the values List
and one of the Reducer functions below (what should the memo be?):

4. Now change your code to find the max # of assists Joel Berry had in a game
where he scored less than 15 points. Check-in on PollEv.com/compunc when
you've got it.

let filtered: Game[] = games.filter(PREDICATE);

let values: number[] = filtered.map(TRANSFORM);

let result: number[] = values.reduce(REDUCER, INITIAL_MEMO);

// TODO #1
let filtered: Node<Game> = games.filter(fewPoints);
// TODO #2
let values: Node<number> = filtered.map(toAssists);
// TODO #3
let result: number = values.reduce(max, 0);

filter-map-reduce Pipeline

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

20

13
33

Game[]

Game[]
number[]

number

Filter

Of games that UNC won, how many points did the player score in total?

Map Reduce

filter-map-reduce Data Processing Pipeline

Of games

Big idea: We can select any combo of a filter, map, and reduce sequence.
Result: (# Predicates) x (# Transforms) x (# Reducers) different analyses.

that UNC won

that UNC lost

with 3+ assists

with a block

etc

, what was the

points

assists

fouls

blocks

etc

total

average

min

max

etc

Game[] Game[]Filter:

Game[] number[]Map:

number[] numberReduce:

Hands-on: Weather Redux

1. Open 02-weather-redux-app.ts

2. At the first TODO, call the filter method on data. Use an anonymous function as the predicate to
filter where a row's precipitation > 0.

3. At the 2nd TODO, assign the total number of rows with precipitation (length of daysWithRain
array)

4. At the 3rd TODO, map daysWithRain to a number array with only the precipitation levels of each
WeatherRow.

5. At the 4th TODO, reduce to find the sum of precipitation. At the 5th reduce to find the max
precipitation

