
3. Which of the following are valid ways to call 
the function f?

let f = <T>(a: T, b: T): boolean => {
return a === b;

};

A) f("foo", "bar")

B) f("foo", 3)

C) f(3, 3)

D) f(3, "bar")

E) f(true, false)



Toward a Generic filter Function

• In the first two example files, our filter function worked specifically on 
a List of numbers or a List of string values.
• Each used a Predicate interface that was specific to a string or a number.

• How can we make the filter function generic?
• Earlier, we introduced generic functions and classes

• Today we'll look at generic functional interfaces

• These ideas complement each other



Introducing: Generic Functional Interfaces

• We can declare a functional interface 
to be generic for 
"any type T" by adding the diamond 
<T> after the name

• Now, when we use type 
Predicate<T>, we substitute the 
actual type we want T to be.

• Notice that if we have a 
Predicate<string> the 
function's parameter will be type 
string.

interface Predicate<T> {
(item: T): boolean;

}

Predicate<string>

(item: string): boolean;

Predicate<number>

(item: number): boolean;



Why are types important?

• Types communicate expectations and capabilities in our programs.

• Take the following variables, for example:

let item: number;
let test: Predicate<number>;

• The ways we can use item and test in our code are very different!

• item: holds data whose type is number. 
With item, we can do the things like arithmetic, numeric comparisons, and so on.

• test: holds a function that accepts a number as an input and returns a boolean. With 
test, we can call it as a function.



Follow-along: Generic Interface & filter

• Open 02-generic-interface-app

• TODO #1) Make the Predicate interface generic for any type T

• TODO #2) Make the filter function generic for any type T, as well

• TODO #3) Try using filter with a List of strings and a string Predicate



// TODO #1: Make the Predicate interface generic
interface Predicate<T> {

(item: T): boolean;
}

// TODO #2: Make the filter function generic
let filter = <T> (xs: Node<T>, test: Predicate<T>): Node<T> => {

if (xs === null) {
return null;

} else if (test(first(xs))) {
return cons(first(xs), filter(rest(xs), test));

} else {
return filter(rest(xs), test);

}
};

// TODO #3 try using the generic filter function
let words: Node<string> = listify("The", "quick", "brown", "fox");
let result: Node<string> = filter(words, is3Letters);



A Big Idea in CS – Algorithmic Abstraction

• Once we have an algorithm, or a process for solving a problem, we 
can "abstract its details away" in a function

• If there are values the function needs, introduce data parameters

• If there is logic the function needs, introduce function parameters
• In filter, the test logic is supplied as a function parameter

• Once we have a generic, well abstracted function… we can reuse it!
You'll rarely reimplement filter logic ever again!


