
Arrays Continued
Lecture 6

PollEv.com/compunc

Announcements

• PS2 - Posted last Thursday, Due Friday 1/7 at 11:59pm
• If you have not completed at least 3 of the 9 functions, then you are at a high

risk of not making the deadline.

• WS1 - Posts Tonight and Due ???

1. Fill in the blanks...

export let main = async () => {
let a: A = ___B___();
let b: C = ___D___(["hi"]);

};

let y = (s: E): F => {
return s.length;

};

let z = (): ___G___ => {
return "hi";

};

2. What does the following expression
evaluate to: foo([4, 8, 16], 4)

let foo = (a: number[], n: number): number => {
for (let i = 0; i < a.length; i++) {

if (a[i] > n) {
return a[i];

}
}
return -1;

};

void functions return nothing.

• There are times when it's useful to have a function that performs a set of
steps that do not result in a returned value.

• A function whose return type is void is often called a procedure.

• The print Function is an example of a procedure
• What does calling the print function return?
• Nothing! It is a procedure the results in output to the screen.

• Procedures are commonly used to evoke effects outside itself
• To make data or graphics appear on a screen
• To save data to a file
• To send data to another computer over the internet
• To modify or mutate a reference to an array or object

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number): void => {
09 a[a.length] = n;
10 };
11
12 main();

3. PollEv – What is the printed output of this code listing?

Environment Diagrams with Arrays

• Now that we are working with arrays, the model of our environment diagram
must expand to have a heap area in memory.

• The heap is also often called dynamic memory. It is an area in your program's
working memory where large and growing values are kept.

• Array variable names are still established in the current stack frame, however,
they will refer to the actual array data on the heap with a pointer arrow.

• Why? An important reason is it would be time and memory intensive to copy
large data structures (like arrays) around between function calls.
• Each variable name referring to an array is just an address number to a place in the heap.
• For now, we'll visualize this by drawing arrows! In COMP211/311, you'll get the nitty gritty.

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

Function Call - main
When a function call is encountered, a new frame is added to your stack. Label it
with the function's name. Add its return address (RA). Establish parameters.

The Heap

RA 12

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

Variable Initialization – New Array
When a declaration and initialization is reached, evaluate the right hand side first.
When an array literal is evaluated, establish it on the heap.

The Heap

RA 12
number[]

0 10

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

Array Declaration and Assignment
When an array variable is declared and assigned, its label and is established in the
current frame. Its value is a reference (pointer) to the heap value.

The Heap

RA 12
number[]

0 10

anArray

!!! This is a very important concept to understand. Array variables behave very
differently from primitive variables because they're references to heap value.

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

Function Call – Establish Frame of Call
Add name, return address, and copy in parameters to be prepared for your jump.
NOTICE! The pointer of anArray was copied, not the array on the heap itself.

The Heap

RA 12
number[]

0 10

anArray

append
RA 03

a

n 20

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

Append Value to Array
Use name resolution to find n, a, and a.length to append 20 to the array a.

The Heap

RA 12
number[]

0 10

1 20

anArray

append
RA 03

a

n 20

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

"Return" from a void Function (Procedure)
When the end of a void function is reached, the RV is nothing/void and control
jumps back to the Return Address (RA).

The Heap

RA 12
number[]

0 10

1 20

anArray

append
RA 03

a

n 20
RV Ø

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12
number[]

0 10

1 20

anArray

append
RA 03

a

n 20
RV Ø

append
RA 04

a

n 30

Function Call – Establish Frame of Call
Add name, return address, and copy in parameters to be prepared for your jump.
NOTICE! The pointer of anArray was copied, not the array on the heap itself.

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12
number[]

0 10

1 20

2 30

anArray

append
RA 03

a

n 20
RV Ø

append
RA 04

a

n 30

Append Value to Array
Use name resolution to find n, a, and a.length to append 30 to the array a.

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12
number[]

0 10

1 20

2 30

anArray

append
RA 03

a

n 20
RV Ø

RV Ø

append
RA 04

a

n 30

"Return" from a void Function (Procedure)
When the end of a void function is reached, the RV is nothing/void and control
jumps back to the Return Address (RA).

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12
number[]

0 10

1 20

2 30

anArray

append
RA 03

a

n 20
RV Ø

RV Ø

append
RA 04

a

n 30

Print Function Call
Output will be print's visual representation of 10, 20, 30.

01 export let main = async () => {
02 let anArray: number[] = [10];
03 append(anArray, 20);
04 append(anArray, 30);
05 print(anArray);
06 };
07
08 let append = (a: number[], n: number):void => {
09 a[a.length] = n;
10 };
11
12 main();

The Stack

main

The Heap

RA 12
number[]

0 10

1 20

2 30

anArray

append
RA 03

a

n 20
RV Ø

RV Ø

append
RA 04

a

n 30

End of main
Reaching the end of main causes control to resume just after the call to main and
our program has completed.

RV Ø

Value Types vs. Reference Types

• Primitive types (number, boolean, string1) are value types
• Variables hold copies of actual values.

• Assigning one variable to another copies the value.

• Changing a copied variable's value does not impact original or vice-versa.

• Composite types (arrays, objects2) are reference types
• Variables hold references to actual values.

• Assigning one variable to another copies the reference. Both variables now
refer to the same value in memory.

• Modifying a referenced value will impact all references to it.

1. The true story of strings is more complicated than we're letting onto in 110. Technically, they're also reference types. However, since
they're immutable, meaning we cannot change their values we can only establish new strings, they behave like value primitives.

2. We'll discuss objects in the next unit. They're another composite data type.

4. Given the two code listings below, draw environment diagrams for each.
Then respond on PollEv with whether b's value at line 7 is the same or different
between examples. Finally, in the first example, what is b's value either way?

Array Literals Create New Arrays on Heap (1/2)

• Every time the processor reaches an array literal value a new array is
constructed on the Heap

• Array literals can result in an empty array:
let scores: number[] = [];

let names: string[] = [];

• Array literals can also initialize an array with values:
let tens: number[] = [10, 20];

let words: string[] = ["foo", "bar"];

number[]scores

number[]

0 10

1 20

string[]names

tens

string[]

0 "foo"

1 "bar"

words

Reassignment of an Array Literal (2/2)

• Consider the following code:
Line 1) let words: string[] = ["foo", "bar"];

Line 2) words[0] = "baz";

Line 3) words = ["wow"];

string[]

0 "foo"

1 "bar"

words
string[]

0 "baz"

1 "bar"

words string[]

0 "baz"

1 "bar"

words

string[]

0 "wow"

After Line 1 After Line 2 After Line 3

References ALWAYS refer to a value in the Heap

• When you access a reference, its value is its pointer (arrow).

string[]

0 "hello"

a

b

a

b

string[]

0 "hello"

Results in:

Wrong! Never do this:

Why? Notice a's value is the pointer. So when we
assign a's value to b, b's value is the same pointer.

Disclaimer for future CS courses: There are lower-level
programming languages (C, C++, Rust) where this is possible.

a

b a

string[]

0 "hello"

nor this:

5. Trace an Environment Diagram
for the Program Listing Below

Array Arguments Pass their Pointer (Arrow)
• An array argument results in the parameter having the same pointer.

• Just like one array variable assigned to another gets a copy of its pointer.

The Stack

main

The Heap

RA 17
number[]

0 10

1 20

2 30

tens

clone

RA 5

a

c

number[]

The state of the stack and heap after line 10 evaluates.

Returning References

• Functions returning an array return a pointer arrow to the array referenced.

The Stack

main

The Heap

RA 17

number[]

0 10

1 20

2 30

tens

clone
a

The state of the stack and heap after line 5 evaluates.

number[]

0 10

1 20

2 30

RA 5 c

RV

b

6. What is printed?

let s = "abc";
print(s[1]);
print(s.length);

Strings are Arrays of Characters

• In the first video of the semester, your computer's memory
was introduced with a diagram to the left.

• Notice cells 1-5 store individual characters... not strings.

• A string is an array of single characters underneath the hood.
• We haven't needed to worry over this detail thanks to data

abstraction!

• We can "poke through" the abstraction!
• Access individual characters with stringName[index]
• Access the length of a string with stringName.length

string vs string[]

let a = ["1", "2", "3"];

let s = "123";

There is a very important difference between a string value and an array of
single character strings:

A string's elements cannot be changed. An array's can be.
• You cannot reassign a character like s[1] = "9";

• You cannot append new characters to the end of it.

• More precisely, a string is an immutable values because its contents cannot change.

• When you concatenate two strings you are producing a third, new string value.

Operation Assignment Operators
• Consider the following assignment statements:

i = i + 10;

s = s + "!";

• Increasing a variable, concatenating to a variable, and so on, are so
common that there are built-in shorthand operators:

Operator Syntax Example Equivalent To

Addition Assignment += i += 10; i = i + 10;

Subtraction Assignment -= i -= 10; i = i - 10;

Multiplication Assignment *= i *= 10; i = i * 10;

Division Assignment /= i /= 10; i = i / 10;

Remainder Assignment %= i %= 10; i = i % 10;

Concatenation Assignment += s += "!!!"; s = s + "!!!";

Challenge Question #7 - pollev.com/compunc
• What is the result of calling: lol(3)

let lol = (force: number): string => {
let s = "";
for (let i = 1; i < force; i++) {

s += "h";
for (let h = 0; h < i; h += 1) {

s += "e";
}

}
return s;

};

Notes on Nested Loops

• General Rule: When the closing curly brace of a loop is encountered,
the loop jumps back to the start of its matching condition.

• An inner loop will jump back up to the inner loop's condition and
an outer loop will jump back up to the outer loop's condition.

• Thus, an inner loop must complete all of its iterations for each single
iteration of an outer loop.

