
Arrays
Lecture 5

Go to poll.unc.edu

Sign-in via this website then go to pollev.com/compunc

VSCode: Open Project -> View Terminal -> npm run pull -> npm start

Upcoming Deliverables

• PS2 - Array Utils
• Releases at 5pm today

• Due Fri 2/7 at 11:59pm

Tutoring and OH Conceptual Help

• Looking for extra conceptual help outside of lecture?
• Conceptual help only! For help with problem sets and unsubmitted worksheets, office hours

is our only personalized resource.
• Great way to go over quiz questions you did not understand.

• Free tutoring from the COMP110 UTA team is available:
• Tuesdays 5-7pm
• Wednesdays 5-7pm
• Thursdays 5-7pm

• All in Fred Brooks 007 as part of the CS Learning Lab

• Can't make tutoring? Come to office hours and request conceptual help.
• If you do this on days where there is not a queue we can work with you for longer than 15

minutes 1-on-1.

Graded warm-up questions…

Warm-up Questions

1. What is A in: for (A ; B ; C) { D } - Counter variable initialization
2. What is B in: for (A ; B ; C) { D } - Boolean test
3. What is C in: for (A ; B ; C) { D } - Variable modification
4. The for loop's counter variable is only defined inside the for loop. true
5. A for loop is more difficult to use than a while loop because you are more

likely to write an infinite loop. false
6. An array is a variable with a name that holds many values addressed by

an index. true
7. Each item in an array is called: an element
8. The first index in an array is always 1. false
9. Which of the following is the type "array of numbers": number[]
10. What property tells you how many values an array named a holds?

a.length

1. What is the printed output when main runs?

export let main = async () => {
test("double(3)", 6, double(3));

};

let double = (x: number): number => {
return x ** 2;

};

let test = (s: string, e: number, a: number): void => {
if (e === a) {

print("PASS: " + s);
} else {

print("FAIL: " + s);
}

};

Big Idea: We can write code to test the
correctness of programs we're working on.
• This is generally called testing in industry

• Helps you confirm correctness during development
• Helps you avoid accidentally breaking things that were previously working

• The idea is what was illustrated in the last PollEv:
1. Implement the "skeleton" of the function you are working on

• Name, parameters, return type, and some dummy (wrong/naive!) return value
2. Think about good examples in how the function could be used (what arguments?) and

what you would expect it to return back
3. Write a "test case" that actually performs your example function call and compares

your expected return value with the actual result
4. Once you have failing tests, then you go actually try to correctly implement the

function's body

• This gives you a framework for knowing your code is behaving as you expect

Example: Writing and Testing a sum Function (1/2)

Let's write a function to add up all elements of a number array!

Step 0) Implement the function skeleton:
let sum = (a: number[]): number => {

return -1; // return a dummy value (wrong but correct type)
}

Step 1) Think of some example uses...
sum([1, 2, 3]) should return 6
sum([110]) should return 110
sum([]) should return 0

Example: Writing and Testing a sum Function (2/2)
Step 2) Write test cases that encode the example uses you produced
• A test has a name, an expected return value, and an actual return value.

• How do you name a test? We'll use a string that looks like the function call so we can easily
find the test in our code if we need to.

• How do you get the actual RV? You perform an actual function call
• What is a test? Just a call to a function that compares expected vs actual and prints

diagnostic output. Take a look at the testNumber function to see what's happening.

testNumber("sum([1, 2, 3])", 6, sum([1, 2, 3]));

Step 3) Once your tests run without any black screens of death, then you go work
on correctly implementing the function being tested (sum). You get immediate
feedback on whether your tests are passing or not!

name of test expected rv
actual rv

(calls the function!

Follow-Along: Testing sum

• Let's implement a function to sum the elements of an array

• Function Skeleton:

• What are our test cases?

• Notice the sum function takes an array of number values as a
parameter and returns a number!

Hands-on: Implementing sum

• Try implementing the sum function

• Your algorithm should:
1. Declare a variable to "accumulate" a sum
2. Loop through each element in the input array a and add its value to

your accumulating variable
3. Return your accumulating variable

• Save to have your tests run against your implementation of sum.

• Check-in when your sum tests are passing!

Organizing a Project into Multiple Files

• As our programs grow in size, we will organize them across multiple files
• Each file will have related functions and functionality

• You can export functions from one TypeScript file

export let aFunc = () => { ... }

• And import them into another TypeScript file

import { <function>, <function> } from "./<file>";

• Example: import { foo, bar } from "./library";
• These functions would be exported from a file named library.ts
• Note: Only the file with the main function needs to its filename to end with –app.ts

Multiple File Example

• Let's try reorganizing our array-practice-app.ts to clean it up

1. Remove the comment and code for testNumber function definition
• At the top of the file add an import to import the same function from test-util.ts

2. Move the sum function definition to the top of array-functions.ts, then
• add the keyword export before: let sum = (...

• Back in array-practice-app.ts add an import for sum:

Test-driven Function Writing

• Before you implement a function, focus on concrete examples of
how the function should behave as if it were already implemented.

• Key questions to ask:

1. What are some usual input parameters?
• These are called use cases.

2. What are some valid but unusual input parameters?
• These are your edge cases.

3. Given those input parameters,
what is your expected return value for each set of inputs?

Test-Driven Programming: Case Study join

• Suppose you want to write a function named join

• Its purpose is to make form a string out of a number array a's values
where each element is separated by some delimiter.

Example: joining an array with 1, 2, 3 and delimiter "-" returns "1-2-3"

• Its signature is this: join = (a: number[], delimiter: string): string

1. What are some usual input parameters?
• These are called use cases.

2. What are some valid but unusual input parameters?
• These are your edge cases.

3. Given those input parameters,
what is your expected return value for each set of inputs?

Testing Use/Edge Cases Programmatically

• After you have some use and edge cases, implement the skeleton of the
function that is syntactically valid but intentionally incomplete
• Typically this means define the function and do nothing inside of the body except

return a valid literal value. For example:

• Then, turn your use and edge cases into programmatic tests.

• How? With a function that compares an expected result with an actual result.

Hands-on: Implement join

• Add a skeleton definition of join to array-functions.ts

• Import join in array-practice-app.ts, import testString

• In array-functions.ts, write the join function to build a string.
1. Declare a string result variable. Initialize it to an empty string.

2. Write a loop that iterates while counter variable is less than a.length
1. If i is greater than 0, then append the delimiter to your result string

2. In all cases in the repeat block of the loop, append a[i] to your result string

3. Return the resulting string

Programmatic Tests Give You Instant Feedback

Test:

Result:

Testing is no substitute for critical thinking…

• Passing your own tests doesn't ensure your function is correct!
• Your tests must cover a useful range of cases

• Rules of Thumb:
• Test 2+ use cases and 1+ edge cases.

• When a function has if-else statements, try to write a test that reaches each
branch.

Challenge: What are the elements of a?

let a: number[] = [2]; // Notice initial element 2

for (let i = 0 ; i < 3; i++) {
a[a.length] = (i + 1) * 2;

}

print(a);

How do we append an element to an array?

• Given an array a, what is the next index needed to append?
• When it is empty, or has 0 elements, the next index is 0
• When it has 1 element, the next index is 1
• When it has 2 elements, the next index is 2

• Because of 0-based indexing, we can use the # of elements in an array as
the index to use to append a value to the array.

• Append to an array:

a[a.length] = <value>;

Suppose you're writing a fillRange function

• Its signature is:

fillRange(low: number, high: number): number[]

• Its purpose is to generate an array of consecutive integers increasing from
low and ending with high, inclusive.

• Select the test case (input parameters and expected return value) which
you believe is the best example of an edge case.

Hands-on: Write Tests for fillRange

• The function generates an array of numbers from low to high, inclusive.

• One example use case:
fillRange(0, 2) expects a return value of [0, 1, 2]

• In array-practice-app.ts:
1. Write a test for another use case you can imagine: inputs 1, 3 – output: [1, 2, 3]
2. Write a test case for an edge case – input: 3, 1 – []

• Once you have two failing tests, one passing, check-in on
pollev.com/compunc

Hands-on: Implement fillRange

1. Open array-functions.ts

2. Hint #1: Look to fillZeros as a starting point.

3. Hint #2: What should your loop's counting variable's initial value be?

4. Hint #3: You can append to an array named a with: a[a.length] = <num>

5. Check-in once you have your tests passing and a working fillRange.

6. Done? Try improving with a version that rounds down decimals and still works.

