
Function Calls,
Environment Diagrams, and

Expressions
Lecture 03 - Spring 2020

Go ahead and have out your one page of notes for the warm-up
questions and open up pollev.com/compunc in preparation.

Tutoring! Tues, Weds, Thu 5pm-7pm

• What: Conceptual Help and Practice in Small Groups
• Working on problem sets is prohibited in tutoring

• For Problem Set help come to in regular Office Hours (open 11a-6p most days)

• Where: Fred Brooks Building 007

• When: Tuesdays, Wednesdays, Thursdays from 5pm to 7pm

• Who: Tutoring led by senior COMP110 UTAs

Announcements

• WS0 – Release tonight and Due Sunday 1/26
• It will require concepts from videos 9-11 and what we discuss today.

• If this is your first time uploading a scanned document to Gradescope through
an app on your phone – you should assume the deadline is the day before
earlier to give yourself time to figure it out.

Challenge Question 1 - What is the printed output the
user of this program will see when it runs?

import { print } from "introcs";

export let main = async () => {
f(2);

let x = f(4);
print("x: " + x);

};

let f = (n: number): number => {
print(n);
return n + 1;

};

main();

The return Statement vs. "Printing"

• The return statement is for your computer to send a result back to the
function call's bookmark within your program.

• A bookmark is dropped when you call a function with a return type.
When that function's body reaches a return statement, the returned value replaces
the function call and the program continues on.

• Printing is for humans to see. To share some data with the user of the
program you must output it in some way.

• If you have a function f that returns some value, you can print the value it
returns by:
• 1. Printing its return value directly print(f()), or
• 2. By storing its return value in a variable and later printing the variable.

Tracing Programs by Hand

• Understanding how a program will evaluate depends on systematically
keeping track of many related things.

• As your program is evaluated, there are many moving parts:
1. The current line of code, or expression within a line, it will process next

2. The trail of function call bookmarks that led to the current line

3. The values of all variables and a map of variable "names" to the location of
their values

• As a human this quickly becomes more information than you can
maintain in your head.
• Good news: Environment diagrams will help us keep track of these things.

Environment Diagrams

• A program's runtime environment is the mapping of names in your program to their
locations in memory.

• A program's state is made up of the values stored in those locations.

• You can use environment diagrams to visually keep track of both the environment and its
state.

• Additionally, environment diagrams will help you keep track of how function calls are
processed.

• In the 2018-2019 academic year we began teaching Environment Diagrams
• On the final exam, students who used environment diagrams to trace code were over 50% less likely

to make errors than students who did not.

Environment Diagram

• There are two areas of an environment diagram:

1. Call Stack (or "The Stack")
• When a function is called, a new Frame is added
• Every frame has:

• The name of its function definition

• A list of variable names and boxes holding their
bound values

• Variable values are stored in stack frames
• A place to represent its return value (rv) when it

returns.

2. Dynamic Memory Heap (or "The Heap")
• We'll come back to this in the next unit.

• This is a rough approximation of the model of how
state in your programs is managed by the processor.

Globals

The Call Stack The Heap

Example:

main
fn

main

x 0

a

string[]

0 "a"

1 "string"

2 "array"

For this unit, we'll only
be focused on this area

of the call stack.

In the units ahead,
we'll learn more about
globals and the heap.

f x 0

rv 1

ra 10

ra 20

Environment Diagram Example

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

• Let's trace the example to the left
using an environment diagram!

• In the process you will learn how to:
• Establish a frame for main

• Establish local variables (those declared
inside of a function's body) in the frame

• Call functions
• Establish a frame for the function

• Establish parameters as local variables,
assigned their argument's values

• Keep track of the value returned by a
function call

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Function Call - main
When a function call* is encountered, a new frame is added to your stack. Label
it with the function's name. Add a "Return Address" entry with the line # of call.

ra 12

ra 12

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Variable Declaration and Initialization
When a variable is declared and initialized first evaluate the value on the right. In this case it's
the number literal 4, no more work is needed. Then, establish it in the current frame.

x 4

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Variable Declaration and Initialization
When a variable is declared and initialized first evaluate the value on the right. In this case it's a
function call, so let's evaluate what the function call will return first.

x 4
ra 12

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Function Call - Step 1) Evaluate Arguments
Before evaluating the function call to f, we must determine the values of each argument.
What is the name x bound to in main's frame? We look in our diagram to see its value is 4.
Since it is an argument, we will copy this value to the corresponding parameter n.

x 4
ra 12

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Function Call - Step 2) Establish a Frame
1. Give the frame the function's name. 2. Write down the line the function call occurred on as
the frame's Return Address (RA). 3. Assign argument values to the function's parameters.

x 4

f
n 4

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Function Call - Step 3) Jump to Function
The return address for frame f tells us we'll return back to line 3 once the call to f completes.
Now we're ready to jump in to the first line of the function.

x 4

f
n 4

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Variable Declaration and Initialization
When a variable is declared and initialized first evaluate the value on the right. In this case it's
an arithmetic expression. Let's focus on it.

x 4

f
n 4

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Name Resolution: What is n?
When a name is encountered in our program we look to the current frame of the stack for its
value. In this case, n's value in f's frame is bound to 4. The expression 4 + 1, then, is 5.

x 4

f
n 4

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Variable Declaration and Initialization
Now that we've evaluated the right hand side, we add an entry for the newly declared variable
x to the current frame for f. Notice, there are two separate values of x in our program!

x 4

f
n 4

x 5

Notice the frame for main has its
own variable x with a value of 4.

The frame for f also has its own
variable x with a different value.

This is entirely ok and a
wonderful, powerful thing. This
means when you write functions
you don't need to concern
yourself with the variable names
in other functions.

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Return Statement - Step 1) Evaluate its Value
When a return statement is encountered, you must first evaluate the value it is returning. Let's
focus on evaluating x.

x 4

f
n 4

x 5

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Name Resolution: What is x?
When a name is encountered in our program we look to the current frame of the stack for its
value. In this case, x's value in f's frame is bound to 5.

x 4

f
n 4

x 5

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Return Statement - Step 2) Record its Value
When a return statement is encountered, once you know the value, enter the return value in a
box named rv in the current frame.

x 4

f
n 4

x 5
rv 5

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Return Statement - Step 3) Send value back to RA
The return value is then returned to the return address where the call originated. Its value will
be substituted for the function call. So back in main, this line is evaluated as let y = 5;

x 4

f
n 4

x 5
rv 5

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Variable Declaration and Initialization
Now that we've evaluated the right hand side, we add an entry for the newly declared variable
y to the current frame main.

x 4

f
n 4

x 5
rv 5

y 5

How can you tell what the
current frame of execution is?

The current frame is always
the lowest frame that has not
returned. So, if a frame has an
rv entry, that frame is ignored.

Behind the scenes in your
computer, once a function call
returns its environment and
state are erased. When
working on paper, though, it is
helpful to keep track of all the
work it took to arrive at a
given position in our program.

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Print Function Call
Technically a call to a function like print will also add a frame to the stack and go through the
same series of steps. For functions defined outside of our code, though, we'll skip that.

x 4

f
n 4

x 5
rv 5

y 5ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Name Resolution: What is y?
When a name is encountered in our program we look to the current frame of the stack for its
value. In this case, y's value in main's frame is bound to 5.

x 4

f
n 4

x 5
rv 5

y 5ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Printed Output
When a print statement appears, you'll evaluate its argument as we just did, and record its output. Remember,
this is output for the person running the program to see. The rest of what happened in our environment diagram
was for the computer's purposes only.

x 4

f
n 4

x 5
rv 5

y 5

Output

y: 5

ra 12

ra 3

01 export let main = async () => {
02 let x = 4;
03 let y = f(x);
04 print("y: " + y);
05 };
06
07 let f = (n: number): number => {
08 let x = n + 1;
09 return x;
10 };
11
12 main();

The Stack

main

End of main
When our program reaches the end of the main function you'll notice it has no return statement. We'll talk more
about these kinds of functions next week. For now, expect its return value is nothing. The processor would jump
back to the return address at line 12 and reach the end of the program.

x 4

f
n 4

x 5
rv 5

y 5

Output

y: 5

rv

ra 12

ra 3

CQ#2 - What is the printed output? Try diagramming!

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Call to main
Your code begins when the last line of the file reaches the call to the main function. This establishes the frame for
main.

ra 12

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Variable Declaration and Initialization
The right hand side of this initialization is a constant so we can establish the variable in the current frame of the
stack directly.

x 0

ra 12

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Function Call - Step 1) Evaluate Arguments
Using name resolution we lookup the name x in main's frame and see that its value is 0.
0 + 1 means the value for the x parameter of the call to f will be assigned the argument value 1.
Important: The value of x in main's frame did not change because we did not assign a new value to x.

x 0

ra 12

1

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Function Call - Step 2) Establish a Frame
1. Give the frame the function's name. 2. Write down the line the function call occurred on as the frame's Return
Address (RA). 3. Assign the evaluated argument values to the function's parameters.

x 0

f
x 1

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Function Call - Step 3) Drop a Bookmark, Jump to Function
We know we'll have to return back to where the function call occurred, so leave a bookmark.
Then, jump in to the first line of the function.

x 0

f
x 1

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Variable Assignment
When an assignment statement is encountered, we must evaluate its right-hand side first.

x 0

f
x 1

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Name Resolution
What is x's value? We look in the current stack frame which is the lowest frame that hasn't returned and see that
x's value is 1. So, the right-hand side evaluates to 2.

x 0

f
x 1

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

Variable Assignment
When assigning to a variable, name resolution rules once again apply. Which x are we assigning to? The one in the
current stack frame!

x 0

f
x 2

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

Return Statement - Step 1) Evaluate its Value
When a return statement is encountered, you must first evaluate the value it is returning. Let's
focus on evaluating x. We look in the current frame and see its value is 2.

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

Return Statement - Step 2) Record its Value

rv 2

When a return statement is encountered, once you know the value, enter the return value in a
box named rv in the current frame.

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

rv 2

Return Statement - Step 3) Send value back to Bookmark
The return value is then returned to where the function call originated. Its value will be
substituted for the function call. So back in main, this line is evaluated as 2;

Notice if we simply write the line of
code: 2;

It would not change the value of
anything else. We're also not
printing it. We're not doing anything
with the value returned by this
function call.

"If a function call occurs in the
woods and there's no assignment
statement there to receive its return
value, did it really get called?"
(Yes, actually.)

This example would be a silly thing
to do, however, it illustrates a
surprising, important concept.

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

rv 2

Print Statement
We need to evaluate the argument sent to the print statement before we know what is output.

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

rv 2

Variable Access / Name Resolution
What is the value of the variable x? We look in the current frame on the stack which is main's.
Its value is 0.

x: 0

ra 12

ra 3

01 export let main = async () => {
02 let x = 0;
03 f(x + 1);
04 print("x: " + x);
05 };
06
07 let f = (x: number): number => {
08 x = x + 1;
09 return x;
10 };
11
12 main();

The Stack

main

Output

x 0

f
x 2

rv 2

End of Main
When our program reaches the end of the main function you'll notice it has no return statement. Its return value
is nothing. The processor would jump back to main's return address at line 12 and reach the end of program.

x: 0

rv

ra 12

ra 3

Expressions

• Expressions are a fundamental building block in programs

• Expressions are analogous to the idea of clauses in English
• Single clause sentence:

"I am a student."

• Multiple clause sentence:
"I am a student and I am currently sitting in COMP110."

• In English, Sentences are more expressive through the creative use of clauses

• In code, statements are more expressive through creative uses of expressions!

How can we compute the volume of a cube
using different expressions?

1. We can "hard-code" the expression with exact numbers.

answer = 3 * 3 * 3;

let answer: number;

How can we compute the volume of a cube
using different expressions?

2. We can use a variable to hold the length of a side of the cube.

Notice, in doing so, our expression has more meaning:
length * length * length is more expressive than 3 * 3 * 3

answer = length * length * length;

let answer: number;
let length = 3;

How can we compute the volume of a cube
using different expressions?

3. We can use the promptNumber function to allow any number!

Our program is more generally useful.

answer = length * length * length;

let answer: number;
let length = await promptNumber("Length:");

How can we compute the volume of a cube
using different expressions?

4. We can write a function to compute the volume and call the function.

This has two benefits:

1. It reads more naturally: "answer is assigned the result of calculating
cubeVolume using the given length"

2. We can reuse the cubeVolume function without rewriting the equation!

answer = cubeVolume(length);

let answer: number;
let length = await promptNumber("Length:");

let cubeVolume = (side: number): number => {
return side * side * side;

};

Expressions

There are two big ideas behind expressions:

1. Every expression simplifies to a single value at runtime
• Thus, every expression has a single type.
• This occurs only when the program runs (runtime) and when

the processor reaches the expression in the program.

2. Anywhere you can write an expression you can substitute
any other expression of the same type

Where have we used expressions?
• Assignment operator:

let <name>: <type> = <expression of same type>;

• We are able to assign any of the expressions below because each results in a
single number value:

let x: number = 1;
let y: number = x + 1;
let cubeY: number = y * y * y;

• Notice that we are combining multiple expressions in the same line.

• After each line completes, the declared variable has a single value.

Where else have we used expressions?
• if-then statement

if (<boolean expression>) {
// ... elided ...

}

• Any boolean expression can be used as the test expression in an if-then statement

▪ if (age >= 21) { // ...

▪ let is21 = (await promptNumber("Age")) >= 21;

if (is21) { // ...

• When the computer reaches the boolean expression of an if-then statement, it
evaluates the expression down to the single value of either true or false.

Expressions of Various Kinds

• Literal Values
▪ 3.14
▪ true
▪ "hi"

• Variable Access
▪ x
▪ compCourseNumber

• "Unary" operators
▪ -x (number negation)
▪ !is21 (boolean negation)

• Function Calls
▪ cubeVolume(x)

• "Binary" Operators
• Arithmetic

▪ 1 + 2

• Concatenation
▪ "Hello " + name

• Equality
▪ x === 1
▪ x !== 1

• Relational
• age >= 21
• age < 13

Challenge Question #3 - What input at the
prompt would cause "C" to print?

let x = await promptNumber("Enter a value for x");
if (x < 18) {

print("A");
} else {

if (x > 13) {
print("B");

} else {
print("C");

}
}

Pattern: Nesting if-then in an else Pattern

• It is commonly useful to nest
additional if-then-else
statements inside of
subsequent else-blocks

• Why? It allows us to choose
one next step from many
possible options.
• "If this then do X, otherwise if

that do Y, otherwise do Z."

if (response === 0) {
print("Very doubtful");

} else {
if (response === 1) {

print("Ask again later");
} else {

print("It is certain");
}

}

if (response === 0) {
print("Very doubtful");

} else {
if (response === 1) {

print("Ask again later");
} else {

print("It is certain");
}

}

This is so common and useful, we tend to use
simpler syntax for it…

1. First we remove the curly braces surrounding the if-then that is
nested inside of the else-block.

if (response === 0) {
print("Very doubtful");

} else
if (response === 1) {

print("Ask again later");
} else {

print("It is certain");
}

This is so common and useful, we tend to use
simpler syntax for it…

2. Then we clean up the spacing.

if (response === 0) {
print("Very doubtful");

} else
if (response === 1) {

print("Ask again later");
} else {

print("It is certain");
}

if (response === 0) {
print("Very doubtful");

} else if (response === 1) {
print("Ask again later");

} else {
print("It is certain");

}

Using the else-if pattern is a change of style only.
These two listings of code have the exact same logic.

Notice the code is visually simpler and cleaner by using else-if.

if (response === 0) {
print("Very doubtful");

} else {
if (response === 1) {

print("Ask again later");
} else {

print("It is certain");
}

}

if (response === 0) {
print("Very doubtful");

} else if (response === 1) {
print("Ask again later");

} else {
print("It is certain");

}

Follow-Along) Using the else-if Syntax Pattern

• Still in 8-ball-app.ts

• Reformat the conditional logic to use the else-if syntax pattern.

• Step 1) Remove the curly brace directly following the *first* else and its
matching closing curly brace.

• Step 2) Clean up the spacing by bringing the nested if to directly follow else
and unindenting.

• Check-in when complete! pollev.com/compunc

if (A) {
print("X");

}

if (B) {
print("Y");

}

if (C) {
print("Z");

}

print("End");

Many, independent if-then-else statements

• When two or more if-then-else
statements are not nested, they
are independent statements of
one another.

• Each boolean test expression
will be evaluated.

• Notice in the diagram that there
is a path through every block
X, Y, Z.

A

X

End

B

Y

C

Z

if (A) {

print("X");

} else if(B) {

print("Y");

} else if(C) {

print("Z");

}

print("End");

Tracing through else-if statements

• The previous slide does not apply to
else-if statements because…
• An else-if is a nested if-then
• It is nested in the else-block

• Each boolean test expression will
be evaluated until one evaluates to
true. The rest are then skipped.

• Notice in the diagram that there is a
path through only one outcome X, Y,
Z.

• Useful when there are many
possible next steps but you only
want to choose one.

A

X

End

B

Y

C

Z

