Recursion Preview

Lecture 11 — Spring 2019

VSCode: npm run pull / npm start

PollEv.com/compunc

Path Forward

* Quiz Thursday - Emphasis on Environment Diagrams and Reference Types
(Objects/Arrays)

e PS03 - Weather Stats - Due Monday 3/4

* Whiteboard Only Office Hours are in Effect through 3/4!

* If you have a black screen of death or nothing is showing up and you and can't figure out
why, the TAs can help you get your program compiling again.

* Otherwise, laptops will be closed and discussion will revolve around notes or code you
bring in on paper and/or produce on the whiteboard.

* Every time we have done this in past semesters the feedback has been:
"It felt annoying at first, but | actually wound up understanding the concepts | was
confused about and it helped me on the next quiz."

* Next Up:
* Object-oriented Programming
e Recursion (Preview Today)
* Functional Programming

export main =
print(c4());

), CQO. Draw an Environment Diagram

cl = (): number . _
return 1; Answer the following questions on PollEv:

c2 = (): number * How many names are bound globally?
return 1 + c1();

* Not including the globals frame, how

c3 = (): number many frames on the stack are there?
return 1 + c2();

* What is printed?

c4 = (): number
return 1 + c3();

}s

main();

O 00 N O U1 &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

export let main = async () => {
print(c4());
}s

let ¢c1 = (): number => {
return 1;

}s

let ¢2 = (): number => {
return 1 + cl1();

}s

let ¢3 = (): number => {
return 1 + c2();

}s

let ¢4 = (): number => {
return 1 + c3();

}s

main();

The function as a Black Box

* Once a function is correctly implemented, we
can think of it as a "black box"

* We do not need to know or see what happens
inside of the black box...
that's magic

* All we need to know is:
1. What inputs does it need?

2. What does it return back to us?
(Or what effect does it have if void?)

Input Requirement
CEICINEES)

Return Type

function

Arguments (inputs)

he function
as a Black Box

Input Requirements
EICINEES)

Return Value
Return Type

function

CQ1. Draw an Environment Diagram for the Following Code

import { print } from “introcs®; Answer the following three questions
on PollEv:
export main = () {
print(sum(2));
}s * How many names are bound
globally?
sum = (X: number): number
if (x < 1) {
return 0: * How many different values of the
} else { parameter x exist on the stack?

return x + sum(x - 1);

1; } * What is printed?

O 00 N O LT Hh WIN B

T e e e e T
vi A W N R O

import { print } from "introcs”;

export let main = async () => {

print(sum(2));
}s
let sum = (x: number): number => {
if (x < 1) {
return 0;
} else {

return x + sum(x - 1);

}s

main();

Playing with Graphical Procedures

» Today we'll introduce a simple graphics library called Turtle Graphics
* It's a style of teaching introductory computer science that dates back to 1967!

* We have a number of procedures available to us to guide an invisible "turtle" on the
screen who is dragging around a marker...

forward(n: number): void - Moves the turtle forward by n pixels
left(rad: number): void - Turns the turtle left by rad in radians
right(rad: number): void —Turnsthe turtle right by rad in radians
moveTo(x: number, y: number): void - Moves turtle to x, y coordinate

* You can import these functions by:
 import { forward, left, right, moveTo } from "introcs/turtle";

Hands-on: Draw a Square

Radians Chart

e Open 11 / 00-square-app.ts

yis
2

e

* Reference for the imported procedures: 5
 forward(n: number): void
* left(radians: number): void

Iy
=]

T 0,27

1. Implement the forwardTurn function based on its
comments.
Hint: The left function is in terms of radians. Use
Math.Pl for a reasonably precise value of Pl and the
chart right.

2. Implement the square function based on its comment. 2

3. Call the square function from main with a width
argument of 100. You should see a 100-pixel wide

* Check-in on PollEv.com/compunc when complete

Hands-on: Draw a Spiral

* Open 11 / 01-spiral-app.ts
* The logic for spiral will be defined in terms of itself!

* Draw a spiral by:
1. Moving forward by width amount
2. Turning left by 90 degrees (Math.Pl / 2)
3. If the width is greater than 10,

* then call the spiral function with an argument of
97% of the current width

* Check-in on PollEv.com/compunc when your spiral is spiraling out of control.

Recursive Tree Intultion

* Before we paint a happy, little tree recursively, let's explore the idea
intuitively first...

* http://recursivedrawing.com/

 Add a branch

* Recursively add another branch angled a bit to the left and smaller
* Recursively add another branch angled a bit to the right and smaller

* Stop adding branches when the size of a branch gets too small to see

http://recursivedrawing.com/

Follow-Along: Painting a Happy, Little Tree

* The lineOut function turns the turtle by some angle and traces a line
along a branch.

* The lineBack function turns the turtle around, traces back along the
branch, and resets its orientation to where it began.

 To draw a branch, we'll draw a line out and a line back.
* The recursive branches will happen between the line out and the line back.

