Recursion Preview

Lecture 11 — Spring 2019

VSCode: npm run pull / npm start

PollEv.com/compunc



Path Forward

* Quiz Thursday - Emphasis on Environment Diagrams and Reference Types
(Objects/Arrays)

e PS03 - Weather Stats - Due Monday 3/4

* Whiteboard Only Office Hours are in Effect through 3/4!

* If you have a black screen of death or nothing is showing up and you and can't figure out
why, the TAs can help you get your program compiling again.

* Otherwise, laptops will be closed and discussion will revolve around notes or code you
bring in on paper and/or produce on the whiteboard.

* Every time we have done this in past semesters the feedback has been:
"It felt annoying at first, but | actually wound up understanding the concepts | was
confused about and it helped me on the next quiz."

* Next Up:
* Object-oriented Programming
e Recursion (Preview Today)
* Functional Programming



export main =
print(c4());

), CQO. Draw an Environment Diagram

cl = (): number . _
return 1; Answer the following questions on PollEv:

c2 = (): number * How many names are bound globally?
return 1 + c1();

* Not including the globals frame, how

c3 = (): number many frames on the stack are there?
return 1 + c2();

* What is printed?

c4 = (): number
return 1 + c3();

}s

main();
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export let main = async () => {
print(c4());
}s

let ¢c1 = (): number => {
return 1;

}s

let ¢2 = (): number => {
return 1 + cl1();

}s

let ¢3 = (): number => {
return 1 + c2();

}s

let ¢4 = (): number => {
return 1 + c3();

}s

main();



The function as a Black Box

* Once a function is correctly implemented, we
can think of it as a "black box"

* We do not need to know or see what happens
inside of the black box...
that's magic

* All we need to know is:
1. What inputs does it need?

2. What does it return back to us?
(Or what effect does it have if void?)

Input Requirement
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Return Type

function




Arguments (inputs)

he function
as a Black Box

Input Requirements
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CQ1. Draw an Environment Diagram for the Following Code

import { print } from “introcs®; Answer the following three questions
on PollEv:
export main = () {
print(sum(2));
}s * How many names are bound
globally?
sum = (X: number): number
if (x < 1) {
return 0: * How many different values of the
} else { parameter x exist on the stack?

return x + sum(x - 1);

1; } * What is printed?
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import { print } from "introcs”;

export let main = async () => {

print(sum(2));
}s
let sum = (x: number): number => {
if (x < 1) {
return 0;
} else {

return x + sum(x - 1);

}s

main();



Playing with Graphical Procedures

» Today we'll introduce a simple graphics library called Turtle Graphics
* It's a style of teaching introductory computer science that dates back to 1967!

* We have a number of procedures available to us to guide an invisible "turtle" on the
screen who is dragging around a marker...

forward(n: number): void - Moves the turtle forward by n pixels
left(rad: number): void - Turns the turtle left by rad in radians
right(rad: number): void —Turnsthe turtle right by rad in radians
moveTo(x: number, y: number): void - Moves turtle to x, y coordinate

* You can import these functions by:
 import { forward, left, right, moveTo } from "introcs/turtle";



Hands-on: Draw a Square

Radians Chart

e Open 11 / 00-square-app.ts

yis
2

e

* Reference for the imported procedures: 5
 forward(n: number): void
* left(radians: number): void

Iy
=]
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1. Implement the forwardTurn function based on its
comments.
Hint: The left function is in terms of radians. Use
Math.Pl for a reasonably precise value of Pl and the
chart right.

2. Implement the square function based on its comment. 2

3. Call the square function from main with a width
argument of 100. You should see a 100-pixel wide

* Check-in on PollEv.com/compunc when complete



Hands-on: Draw a Spiral

* Open 11 / 01-spiral-app.ts
* The logic for spiral will be defined in terms of itself!

* Draw a spiral by:
1. Moving forward by width amount
2. Turning left by 90 degrees (Math.Pl / 2)
3. If the width is greater than 10,

* then call the spiral function with an argument of
97% of the current width

* Check-in on PollEv.com/compunc when your spiral is spiraling out of control.



Recursive Tree Intultion

* Before we paint a happy, little tree recursively, let's explore the idea
intuitively first...

* http://recursivedrawing.com/

 Add a branch

* Recursively add another branch angled a bit to the left and smaller
* Recursively add another branch angled a bit to the right and smaller

* Stop adding branches when the size of a branch gets too small to see


http://recursivedrawing.com/

Follow-Along: Painting a Happy, Little Tree

* The lineOut function turns the turtle by some angle and traces a line
along a branch.

* The lineBack function turns the turtle around, traces back along the
branch, and resets its orientation to where it began.

 To draw a branch, we'll draw a line out and a line back.
* The recursive branches will happen between the line out and the line back.



