
Recursion Preview
Lecture 11 – Spring 2019

VSCode: npm run pull / npm start

PollEv.com/compunc



Path Forward
• Quiz Thursday - Emphasis on Environment Diagrams and Reference Types 

(Objects/Arrays)

• PS03 - Weather Stats - Due Monday 3/4

• Whiteboard Only Office Hours are in Effect through 3/4!
• If you have a black screen of death or nothing is showing up and you and can't figure out 

why, the TAs can help you get your program compiling again.
• Otherwise, laptops will be closed and discussion will revolve around notes or code you 

bring in on paper and/or produce on the whiteboard.
• Every time we have done this in past semesters the feedback has been:

"It felt annoying at first, but I actually wound up understanding the concepts I was 
confused about and it helped me on the next quiz."

• Next Up: 
• Object-oriented Programming 
• Recursion (Preview Today)
• Functional Programming



CQ0. Draw an Environment Diagram

Answer the following questions on PollEv:

• How many names are bound globally?

• Not including the globals frame, how 
many frames on the stack are there?

• What is printed?





The function as a Black Box

• Once a function is correctly implemented, we 
can think of it as a "black box"

• We do not need to know or see what happens 
inside of the black box... 
that's magic

• All we need to know is:
1. What inputs does it need?
2. What does it return back to us?

(Or what effect does it have if void?)

function

Input Requirement 
(parameters)

Return Type



The function
as a Black Box

function

Function 
Call

Arguments (inputs)

Return Value

Input Requirements 
(parameters)

Return Type



CQ1. Draw an Environment Diagram for the Following Code

Answer the following three questions 
on PollEv:

• How many names are bound 
globally?

• How many different values of the 
parameter x exist on the stack?

• What is printed?





Playing with Graphical Procedures

• Today we'll introduce a simple graphics library called Turtle Graphics
• It's a style of teaching introductory computer science that dates back to 1967!

• We have a number of procedures available to us to guide an invisible "turtle" on the 
screen who is dragging around a marker…

forward(n: number): void – Moves the turtle forward by n pixels
left(rad: number): void – Turns the turtle left by rad in radians
right(rad: number): void – Turns the turtle right by rad in radians
moveTo(x: number, y: number): void - Moves turtle to x, y coordinate

• You can import these functions by:
• import { forward, left, right, moveTo } from "introcs/turtle";



Hands-on: Draw a Square
• Open 11 / 00-square-app.ts

• Reference for the imported procedures:
• forward(n: number): void
• left(radians: number): void

1. Implement the forwardTurn function based on its 
comments. 
Hint: The left function is in terms of radians. Use 
Math.PI for a reasonably precise value of PI and the 
chart right.

2. Implement the square function based on its comment.

3. Call the square function from main with a width 
argument of 100. You should see a 100-pixel wide

• Check-in on PollEv.com/compunc when complete

Radians Chart



Hands-on: Draw a Spiral

• Open 11 / 01-spiral-app.ts

• The logic for spiral will be defined in terms of itself!

• Draw a spiral by:
1. Moving forward by width amount
2. Turning left by 90 degrees (Math.PI / 2)
3. If the width is greater than 10, 

• then call the spiral function with an argument of
97% of the current width

• Check-in on PollEv.com/compunc when your spiral is spiraling out of control.



Recursive Tree Intuition

• Before we paint a happy, little tree recursively, let's explore the idea 
intuitively first…

• http://recursivedrawing.com/

• Add a branch
• Recursively add another branch angled a bit to the left and smaller
• Recursively add another branch angled a bit to the right and smaller

• Stop adding branches when the size of a branch gets too small to see

http://recursivedrawing.com/


Follow-Along: Painting a Happy, Little Tree

• The lineOut function turns the turtle by some angle and traces a line 
along a branch.

• The lineBack function turns the turtle around, traces back along the 
branch, and resets its orientation to where it began.

• To draw a branch, we'll draw a line out and a line back.
• The recursive branches will happen between the line out and the line back.


