Lecture 03
Ready or Not

Control Flow Fundamentals:
Boolean Expressions,
Conditional Statements, and Loops

Go to poll.unc.edu

Sign-in via this website then go to pollev.com/compunc

VSCode: Open Project -> View Terminal -> npm run pull -> npm start

Challenge Question #0 - pollev.com/compunc

* Solve for yourself with paper/pencil then talk with your neighbors to
see if you came to the same answer.

* Don't use an interactive programming REPL!

* What values of a, b, and c would cause the following expression to
evaluate to true?

((a & b) || c) & & ((a || b) && !c)

Challenge Question #1 - pollev.com/compunc

* Solve for yourself with paper/pencil then talk with your neighbors to
see if you came to the same answer.

* Don't use an interactive programming REPL!

* What values of a, b, and c would cause the following expression to
evaluate to true?

(a >9) && (a < ¢) && (c < 12 && !b)

Challenge Question #2 - pollev.com/compunc
What is the output of these programs?

let x = 17; let x = 17;
if (x < 18) { if (x < 18) {
print("A"); print("A");
} } else {
if (x > 13) {

if (x > 13) { e print("B");
print("B"); } else {

} else { print("C");
print("C"); }

} }

Lecture Readiness - "Pulling” Class Materials

 When you come into lecture each day, the routine we'll get into is:

1.

2.

3.

4.

Open PollEv.com/compunc
Open VSCode -> View -> Terminal

In the Terminal, first run: npm run puli
 This downloads the latest lecture materials.

Then run: npm start
* This starts the development compiler and server allowing us to see the output of our code.

Magic 8 Ball

Generating Random Numbers

 The introcs Library has a special function for generating random numbers called...
random

* Before using random, we must import it into our program like print:

import { print, random } from "introcs";

* The rark;dom function generates a random number, so we can use it anywhere we can use
a number:

let response: number = random(0, 2);

"Let choice be a number variable that is assigned the result of calling the random function with the
arguments 0 and 2."

* The two numbers we "give" to the random function specify the bounds of the random
number generated (a number between 0 and 2, inclusive).

Hands-on: Magic 8-Ball

* Open: 01-magic-8-ball-app.ts
* Write a nested if-then-else statement (syntax below) at TODO #1 that will:

if the response variable is equal to zero, then print "Very doubtful”
otherwise,
if response is equal to one, then print "Ask again later”,
otherwise, print "It is certain”

+ if-then-else statement syntax:

if (<test>) {
// then block
} else {
if (<test>) {
// then block
} else {
// else block

}
}

* Check-in on pollev.com/compunc when your program prints one of these 3 messages

Repeating a Game

export let main = async () => {
while (true) {
let question = await promptString("Ask a Yes/No Question");

// ** logic here **

¥

s

Hands-on: Stopping the Loop

1.

Open 04-stopping-8-ball-app.ts
Notice the while loop's condition is the current value of isPlaying

Underneath the TODO, implement the following logic:

When shouldContinue is equal to "yes", isPlaying should be
?:ss:ilgned true. Otherwise, 1sPlaying should be assigned
alse.

Save and test. You should be able to respond "no" and the game stops.

Check-in on PollEv.com/compunc and try to talk through why the loop stops
with a neighbor.

Repeating a Game

export let main = async () => {
let isPlaying = true;
while (isPlaying) {
let question = await promptString("Ask a yes / no question...");
print(randomResponse());

let shouldContinue await promptString("Ask another? yes / no");
if (shouldContinue === "yes") {
isPlaying = true;
} else {
isPlaying = false;
}
}

print("Have a great day.");
s

Pattern: Nesting if-then in an else Pattern

* It is commonly useful to nest if (response
additional if-then-else } elzr:”{t(Very doubtful®);
statements inside of if (response

subsequent else-blocks print("Ask again later");
} else {

print("It is certain");

}

* Why? It allows us to choose }
one next step from many
possible options.

* "If this then do X, otherwise if
that do Y, otherwise do Z."

This is so common and useful, we tend to use
simpler syntax for it...

if (response === 0) { if (response === 0) {
print("Very doubtful"); print("Very doubtful");

} else { } else
if (resygpase === 1) { if (response === 1) {

print("Ask again later"); print("Ask again later");
} else { } else {
print("It is certain"); print("It is certain");
} }
}

1. First we remove the curly braces surrounding the if-then that is
nested inside of the else-block.

This is so common and useful, we tend to use
simpler syntax for it...

if (response === 0) {
print("Very doubtful");
} else

if (response === 1) {

if (response === 0) {
print("Very doubtful");
} else if (response === 1) {
print("Ask again later");
} else {

print("It is certain");

print(“Ask again later");
} else {
print("It is certain");

}

¥

2. Then we clean up the spacing.

Using the else-if pattern is a change of style only.
These two listings of code have the exact same logic.

if (response === 0) {
print("Very doubtful"); if (response === 0) {

} else { print("Very doubtful");
if (response === 1) { } else if (response === 1) {

print("Ask again later”); print("Ask again later");
} else { } else {
print("It is certain"); print("It is certain");

} }

}

Notice the code is visually simpler and cleaner by using else-if.

Follow-Along) Using the else-if Syntax Pattern

e Still in 01-magic-8-ball-app.ts
* Reformat the conditional logic to use the else-if syntax pattern.

e Step 1) Remove the curly brace directly following the *first* else and its
matching closing curly brace.

 Step 2) Clean up the spacing by bringing the nested if to directly follow else
and unindenting.

* Check-in when complete! pollev.com/compunc

Many, independent 1f-then-else statements

* When two or more if-then-else
statements are not nested, they
are independent statements of
one another.

* Each boolean test expression
will be evaluated.

* Notice in the diagram that there
is a path through every block
X,Y,Z.

if (A) {
print("X");
}

if (B) {
print("Y");
}

if (€) {
print("Z2");
}

print("End");

Tracing through else-1if statements

* The previous slide does not apply to if (A) {
else-if statements because...

 An else-if is a nested if-then

* |tis nested in the else-block print("X");

} else if(B) {
* Each boolean test expression will

be evaluated until one evaluates to print("Y");
true. The rest are then skipped.

} else if(C) {

* Notice in the diagram that there is a

path through only one outcome X, Y, print("Z");
/.
}
e Useful when there are many print("End");

possible next steps but you only
want to choose one.

