
Object-Oriented
Programming

Methods and Constructors

Lecture 12

Announcements

• Worksheet Out Today - Due Wednesday 10/16 at 11:59pm
• Office hours close Wednesday 10/16 at 5pm, so hand-in early!

Object-oriented Programming

• So far we've used objects as compound data types
• i.e. to model a row of data in a spreadsheet

• We've written functions, separate from classes, that operate on objects

• The only thing we've been able to do with an "object" is access and assign
values to its properties

• Object-oriented programming allows us to give objects capabilities
• We'll do this with two special kinds of functions: methods and constructors

Review of Classes and Objects

• A class defines a new Data Type
• The class definition specifies properties

• Instances of a class are called objects
• To create an object you must use the new keyword: new <Classname>()

• Every object of a class has the same properties but has its own values

• Objects are reference-types
• variables do not hold objects, but rather references to objects

Follow-along: Simple Method App

• Let's implement and call the sayHello
method example from previous slides
in 00-simple-method-app.ts

class Person {
// ... properties elided...

sayHello(): void {
print("Hello, world");

}
}

let aPerson = new Person();
aPerson.sayHello();

Introducing: Methods

• A method is a special function
defined in a class.
• Everything you know about a

function's parameters, return
types, and evaluation rules are
the same with methods.

• Syntactically, you'll notice there
are some minor differences. No
let keyword, no assignment
operator, and no arrow.

• Once defined, you can call a
method on any object of that
class using the dot operator.
• Just like how properties were

accessed except followed by
parenthesis and any necessary
arguments

class ClassName {

// Properties Elided

<name>(<parameters>): <returnType> {
<method body>;

}

}

let a = new ClassName();
a.methodName();

Functions vs. Methods

let sayHello = (): void => {
print("Hello, world");

};

1. Let's define a silly function.

sayHello();

2. Once defined, we can then call it.

let a = new Person();
a.sayHello();

4. Once defined, we can call the
method on any Person object:

class Person {
// ... properties elided...

sayHello(): void {
print("Hello, world");

}
}

3. Now, let's define that same function as
a method of the Person class.

Hands-on: Practice with the this keyword

• In 01-this-keyword-app.ts...

1. At TODO #1, define the
toString method to the
right.

2. In the main function, at
TODO's #2 , call the
toString method on
Points a and b
respectively.

class Point {

// ... Properties Elided ...

toString(): string {
return this.x + ", " + this.y;

}

}

Method's Special Feature:

Methods can refer to the object the method was called on.

Consider this plain function.
Notice that its parameter p is
a reference to a Point object.

let toString = (p: Point): string => {
return p.x + ", " + p.y;

};

To call it, we would pass a
reference to a Point object as an
argument.

let a = new Point();
print(toString(a));

It turns out we can write a method
that does the same thing and it can
be called like the example to the
right.

How does this magic work???

let a = new Point();
print(a.toString());

Suppose the processor just completed this line...

Globals

The Stack The Heap

main fn ...

main
p0

Point

x 0

y 0

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 toString(): string {
06 /** Elided */
07 }
08 }
09
10 export let main = async () => {
11 let p0 = new Point();
12 print(p0.toString());
13 };

Point class ...

RA ...

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 toString(): string {
06 /** Elided */
07 }
08 }
09
10 export let main = async () => {
11 let p0 = new Point();
12 print(p0.toString());
13 };

How is this method call processed? First, a frame is added...

Globals

The Stack The Heap

main

main
p0

Point

x 0

y 0

Point

Point#toString

What's up with this pound sign? It's conventional
across many programming languages to identify a
method by ClassName#method.

RA ...

RA 12

fn ...

class ...

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 toString(): string {
06 /** Elided */
07 }
08 }
09
10 export let main = async () => {
11 let p0 = new Point();
12 print(p0.toString());
13 };

THEN, a reference named this is established TO the object the
method was called on.... and this is all the magic of a method call.

Globals

The Stack The Heap

main

main
p0

Point

x 0

y 0

Point

Point#toString

this

The processor is performing this step magically
behind the scenes.

RA ...

RA 12

fn ...

class ...

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 toString(): string {
06 return this.x + ", " + this.y;
07 }
08 }
09
10 export let main = async () => {
11 let p0 = new Point();
12 print(p0.toString());
13 };

When name resolution occurs inside of a method, the special variable
this always refers to the object the method was called on.

Globals

The Stack The Heap

main

main
p0

Point

x 0

y 0

Point

Point#toString

this

RV "0, 0"

RA ...

RA 12

fn ...

class ...

Method's Special Feature:

Methods can refer to the object the method was called on.

When a method is called, inside of the
function, a special "variable" is initialized

named this

The this keyword refers to the object
the method was called upon.

class Point {

// ... Properties Elided ...

toString(): string {
return this.x + ", " + this.y;

}

}

let a = new Point();
a.x = 110;
a.y = 110;
print(a.toString());

When the above code jumps to toString, this
will refer to the same Point object a refers to.

let b = new Point();
b.x = 401;
b.y = 401;
print(b.toString());

When the above code jumps to toString, this
will refer to the same Point object b refers to.

Hands-on: Practice with the this keyword

• In 02-stateful-object-app.ts, let's make it easy to move a Point relative to its
current position.

1. At #1, increase the x property of the object translate is called on by dx.
Then, increase the y property of the object translate is called on by dy.
• Hint: reassign this.x and this.y by adding dx, dy respectively.

2. Call translate on Point a in the main function using any values you'd
like at each of the TODOS # 2 and #3.

3. Once you've tested that it works, check-in on PollEv.com/compunc

translate(dx: number, dy: number): void {
this.x += dx;
this.y += dy;

}

Follow-Along: Distance Method

• Let's add a method to
compute the distance
between two points.

• We'll specify the 2nd

point as a parameter
named other.

• We'll also make use of
the special Math
function:
• Math.sqrt(x) computes

square root

class Point {
// … elided …
distanceTo(other: Point): number {

let xDelta2 = (other.x - this.x) ** 2;
let yDelta2 = (other.y - this.y) ** 2;
return Math.sqrt(xDelta2 + yDelta2);

}
}

// Calling the distanceTo method
print(a.distanceTo(b));

𝑑 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2

Why have both functions and methods?

• Different schools of thought in functional programming-style (FP) versus
object-oriented programming-style (OOP).
• Both are equally capable, but some problems are better suited for one style vs. other.

• FP tends to shine with data processing problems
• Data analysis programs like processing stats and are natural fits

• OOP is great for stateful systems like user interfaces, simulations, graphics

• Methods allow objects to have "built-in" functionality
• You don't need to import extra functions to work with an object, they are bundled.
• As programs grow in size, methods and OOP have some extra capabilities to help

teams of programmers avoid accidental errors. You'll see this in 401!

Method Call Tracing Steps

When a method call is encountered on an object,

1. The processor will determine the class of the object and then confirm it:
1. Has the method being called defined in it.

2. The method call's arguments agree with the method's parameters.

2. Next it will initialize the RA, parameters, and the this keyword
• The this keyword is assigned a reference to the object the method is called on

3. Finally, when the method completes, processor returns back to the RA.

Constructors
• An object's properties must be initialized

before the object is usable

• A constructor allows you to
1. Specify initial values of properties upon

construction of an object
2. Require certain properties be specified

• A constructor is just a special method
• Name is constructor
• Also has a variable named this
• Return type is an object of its class

• A class' constructor is called each time the
new <Classname> expression is
evaluated.

class Point {

x: number;
y: number;

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}

}

Defining a constructor

After

let a = new Point(10, 0);

Before

let a = new Point();
a.x = 10;
a.y = 0;

Tracing a constructor. Suppose we're about to construct!

Globals

The Stack The Heap

main fn...

main

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

Point class...

RA ...

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

When the frame is established, a new Point object is referred to by this. Arguments
are assigned to parameters in the constructor's frame.

Globals

The Stack The Heap

main

main

Point

Point#constructor

this

x

y

10

Point

x 0

y 0

12

Notice the default property values are initialized
just before entering the constructor.

fn...

class...

RA ...

RA 12

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

Using name resolution, the value of x from the constructor's frame is assigned to
this.x, which is the new Point object's x property.

Globals

The Stack The Heap

main

main

Point

Point#constructor

this

x

y

10

Point

x 10

y 0

12

fn...

class...

RA ...

RA 12

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

Using name resolution, the value of y from the constructor's frame is assigned to
this.y, which is the new Point object's y property.

Globals

The Stack The Heap

main

main

Point

Point#constructor

this

x

y

10

Point

x 10

y 12

12

fn...

class...

RA ...

RA 12

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

The return value of a constructor is implicitly the same reference as this.

Globals

The Stack The Heap

main

main

Point

Point#constructor

this

x

y

10

Point

x 10

y 12

12

RV

fn...

class...

RA ...

RA 12

01 class Point {
02 x: number = 0;
03 y: number = 0;
04
05 constructor(x: number, y: number) {
06 this.x = x;
07 this.y = y;
08 }
09 }
10
11 export let main = async () => {
12 let p0 = new Point(10, 12);
13 };

The return value of the constructor is assigned to p0 in main.

Globals

The Stack The Heap

main

main

Point

Point#constructor

this

x

y

10

Point

x 10

y 12

12

RV

p0

fn...

class...

RA ...

RA 12

