
Unit 01:
Control Flow Practice

Lecture 05

Go to poll.unc.edu

Sign-in via this website then go to pollev.com/compunc

VSCode: Open Project -> View Terminal -> npm run pull -> npm start

Announcements

• Personal TA Teams Assigned – Your first point of contact for questions.
• Technical questions or questions that would require an attachment or copying

and pasting code will be redirected to Office Hours

• Go to:

1. My110

2. My Team

3. Message My Team

Office Hours Process Reminder

• Office Hours Process
1. Wait in the lobby, not in the office hours room.

2. Submit your request for help on Course.Care

3. Keep an eye on your ticket and come in when it's called. If you do not come
in within 2 minutes of it being called, we will assume you are cancelling.

4. An individual appointment is limited to 15 minutes / one specific question.

5. After an appointment, return to the lobby.

Worksheet Submission Process

• Plan to be ready to submit 6 hours before the deadline.
• The first time you submit a handwritten assignment can take up to an hour to get the app correctly installed,

scanned, emailed to yourself, double checked on your computer, and submitted.

• Attempting to email a worksheet will not count as a submission. To submit your worksheet you
must upload through your Gradescope account.

• To receive full credit, be sure you:

1. Print and hand write your worksheet responses.

2. Scan (on phone) your worksheet with all pages in the correct ORDER and vertical
ORIENTATION.

3. Open your PDF on your computer to double check correctness before submitting.

• Failure to properly submit will result in point deductions.

• For detailed instructions on how to scan from your phone read here:
https://comp110.com/topics/getting-started/gradescope-submissions

https://comp110.com/topics/getting-started/gradescope-submissions

Preparing for Quiz 1

• Know your assigned seat. After you login to My110 on
COMP110.com, go back to the Home page to see your
assigned (shown right).

• Attempting to sit in a seat other than the one assigned will
result in a score of 0 for that quiz.

• We will randomize seats through the semester.

• Practice Material:
• Submitted Worksheet
• Practice Worksheets
• Video Slides
• Practice Problems in Class
• Relevant Topics Pages on Comp110.com

• Review Session – 5pm Monday in FB009

export let main = async () => {
let x: number = _____________;
let y: boolean = _____________;
let z: string = _____________;

};

let a = (): boolean => {
return random(0, 1) === 0;

};

let b = (s: string): number => {
return s.length;

};

let c = (n: number, s: string): string => {
return s + ":" + n;

};

Challenge Questions: There are three variable initialization statements below. In each

blank (three subsequent pollev questions), write a valid function call to an appropriate

function defined below. You may use any literal values you'd like as arguments.

PollEv.com/compunc

CQ 4. Given the code left, draw an

environment diagram. Check-in with the

printed output when complete on

PollEv.com/compunc

Environment Diagrams (v1)

Function Call

1. Evaluate function call argument values

2. Establish new frame on call stack
i. Add name of function

ii. Add RA (Return Address line #)

iii. Copy arguments to parameters in frame

3. Jump to first line of function definition

Function Return Statement

1. Evaluate returned expression
• Add RV (Return Value) in current stack frame

2. Jump back to function caller
i. Line is in RA (Return Address)

ii. The function call evaluates to last frame's RV

Current Frame: The most recently
added frame that has not returned.
(No RV!)

Name Resolution: Look for name in
the current frame. (For now.)

Variable Declaration: Enter name and
space for variable to current frame.

Variable Assignment: Find variable
location via name resolution, copy
assigned value to it.

Variable Access: Find variable
location via name resolution, use
value currently assigned to it.

Increment Operator (++)

• Adding one to a variable is so common when looping there is a special
operator for it…

• We often write: i = i + 1;

• We can instead write: i++;

• These two statements have the exact same impact of incrementing
i's value by 1.

Decrement Operator (--)

• Subtracting one from a variable is also so common, there is a special
operator for it…

• We often write: i = i - 1;

• We can instead write: i--;

• These two statements have the exact same impact of incrementing
i's value by 1.

The TypeScript REPL

• For all lectures, worksheets, and problem sets, we grade based on the
TypeScript language's rules.

• Your web browser's REPL follows the JavaScript language's rules.
• JavaScript is TypeScript without any data typing rules
• In JavaScript you can do fully crazy things like multiply numbers with booleans

• What does it even mean? No point in knowing… it's never a good idea and is a bug or bad code.

• We started in the JavaScript REPL because you didn't need VSCode installed to use it

• For a TypeScript REPL – open a new terminal in VSCode and run the command:

npm run repl

CQ 5. Given the code left, draw an

environment diagram. Check-in with the

printed output when complete on

PollEv.com/compunc

Challenge Question #6: Code writing

• Write a function named prod that is given two numbers and returns
the product of every number between those two numbers, inclusive of
both numbers.

• For example: calling prod(2, 4) should return the result of 2*3*4.

• Check-in on PollEv.com/compunc when you have a solution.

Challenge Question #7 - pollev.com/compunc
• What is the result of calling: cute(3)

let cute = (force: number): string => {
let s = "";
let i = 1;
while (i < force) {

s = s + "h";
let h = 0;
while (h < i) {

s = s + "e";
h++;

}
i++;

}
return s;

};

Notes on Nested Loops

• General Rule: When the closing curly brace of a loop is encountered,
the loop jumps back to the start of its matching condition.

• An inner loop will jump back up to the inner loop's condition and
an outer loop will jump back up to the outer loop's condition.

• Thus, an inner loop must complete all of its iterations for every
individual iteration of an outer loop.

