
Review	Session	7



Filter,	Map,	Reduce



The	Concept

• Pattern	for	analyzing	and	processing	data
• Data	stored	in	lists/arrays
• Apply	functions	to	make	sense	of	the	information

• NOTE:	filter,	map,	and	reduce	can	all	be	used	independently,	but	they	
work	nicely	together	in	order	to	find	pertinent	information	from	data

MAKING SENSE OF DATA



The	Concept:	Step	1:	Filter

• Takes	in	a	collection	of	data	objects	(arrays,	lists)	as	argument
• Returns a	subset	of	the	data	objects	based	on	some	criteria
• Data	type	of	the	parameter	must match the	return	type



The	Concept:	Step	2:	Map

• Takes	a	data	set	and	converts it	into	data	of	another	form
• Use	mapping	to	construct	a	List	of	a	different	type	than	the	one	
passed	in	as	a	parameter
• Useful	when	you	want	to	focus	on	a	certain	property	of	an	object
• Data	type	of	List	returned	different	from	the	data	type	of	List	
parameter

• Ex:	function	that	takes	in	a	List	of	words,	returns	back	a	List	consisting	
only	of	the	first	letters	of	those	words



The	Concept:	Step	3:	Reduce

• The	answer	to	your	question!	
• Takes	a	data	set	and	simplifies	it	into	a	final	result
• Result	could	be	a	single	value	OR	a	collection	of	values

• Types	of	the	data	inputted	and	type	of	data	returned	by	the	function	
mustmatch



Example!

• Making	sense	of	today’s	snow
• Is	this	normal????????

In	the	past	10	years,	how	many	
times	has	it	snowed	at	8:00AM	on	

March	21st?

Let’s	use	historical	weather	data	and	filter,	
map,	and	reduce	to	see	if	it	is	common	to	

have	snow	at	8:00AM	on	March	21st



Using	Filter,	Map,	Reduce	to					Understand	Today’s	Snow
Of	all	mornings	of	March	21sts	in	the	past	10	years,	how	many	times did	it	snow?	

(not)



Making	Sense	of	Our	Data
Of	all	mornings	of	March	21sts	in	the	past	10	years,	how	many	times did	it	snow?	

Was	there	any	precipitation?	 Was	it	<=	32	degrees?

How	many	times	
did	this	happen?



Filtering	to	find	precipitation	
Of	all	mornings	of	March	21sts	in	the	past	10	years,	how	many	times did	it	snow?	

Was	there	any	precipitation?	



let filterByPrecipitating = (list: List<Day>): List<Day> => {
if (list === null) {

return null;
} else if (first(list).precipitation === true) {

return cons(first(list), filterByPrecipitating(rest(list)));
} else {

return filterByPrecipitating(rest(list));
}

};

let precipitatingDays:	List<Day>	=	filterByPrecipitating(days);

Filtering	to	find	precipitation	



Mapping	to	find	temperatures
Of	all	mornings	of	March	21sts	in	the	past	10	years,	how	many	times did	it	snow?	

Was	it	<=	32	degrees?



let tempify = (day: List<Day>): List<number> => {
if (day === null) {

return null;
} else {

return cons(first(day).temp, cold(rest(day)));
} 

};

let precipitatingTemps:	List<number>	=	tempify(precipitatingDays);

Mapping	to	find	temperatures



Reducing	to	find	all	occurrences	of	snow	on	March	21st

Of	all	mornings	of	March	21sts	in	the	past	10	years,	how	many	times did	it	snow?	

How	many	times	
did	this	happen?



let frequencyOfSnow = (temp: List<number>): number => {
let snowProbability: number = 0;
if (temp === null) {
return 0;
} else if (first(temp) <= 32) {
snowProbability = 1;
} else {
snowProbability = 0;
}
return snowProbability + frequencyOfSnow(rest(temp));
}

};

let snowDayNum:	number	=	frequencyOfSnow(precipitatingTemps);

Reducing	to	find	all	occurrences	of	snow	on	March	21st



Conclusion

Today	has	been	the	only	March	21st in	the	past	10	years	that	
has	started	with	snow!	



Function	Literals

• Function	literals	are	when	we	write	functions	without	assigning	them	
a	name

let predFunction = (n: number): boolean => {
return n > 5;

};



Function	Literals

• Function	literals	are	when	we	write	functions	without	assigning	them	
a	name

let predFunction = (n: number): boolean => {
return n > 5;

};



Function	literals

• Before

let predFunction = (n: number): boolean => {
return n > 5;

};
let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, predFunction);



Function	literals

• After

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n: number): boolean => {

return n > 5;
}));



Function	literals

• Let’s	simplify	this	even	more

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n: number): boolean => { return n > 5 });



Type	inference

• Declaring	variables

let x: number = 0;
let s: string = “words go here”;
let youKnowHowThisWorks: boolean = true;



Type	inference

• What	types	would	these	be?

let woo: ____ = “woo”;
let spooky: ____ = 42;
let mystery: ______= false;



Type	inference

• Typing	is	not	a	required	element	of	programming	in	Typescript.
• However,	sometimes	it’s	nice	to	be	verbose.

let x = 5;
let myWords = “cat dog mouse”;
let surprise = listify(“wow”, “amazing”, “cool”);



Type	inference	and	Function	literals

• Remember	this?

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n: number): boolean => {

return n > 5;
}));



Type	inference	and	Function	literals

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n: number): boolean => {

return n > 5;
}));



Type	inference	and	Function	literals

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n) => {

return n > 5;
}));



Type	inference	and	Function	literals

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n) => { return n > 5; }));



Type	inference	and	Function	literals

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n) => { return n > 5; }));



Type	inference	and	Function	literals

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
filter(ourList, (n) => n > 5));



After

filter(ourList, (n) => n > 5));

Motivation

Before

let ourList = listify(6, 3, 7, 8, 2, 1, 9);
let predFunction = (n: number): boolean => {

return n > 5;
};
filter(ourList, predFunction));



Filtering	with	Function	Literals

• Keeping	only	numbers	that	are	greater	than	5
let numbers = listify(1, 2, 3, 4, 5, 6, 7, 8, -500);
filter(numbers, (n) => n > 5);

• Keeping	only	strings	with	length	less	than	5
let numbers = listify(“”, “hi”, “heyoo”, … , “str”);
filter(numbers, (s) => s.length < 5);



Mapping	with	Function	Literals

• Turn	a	list	of	numbers	into	their	string	representation
filter(nums, (n) => “” + n);

• Turn	a	list	of	games	into	a	list	of	points
filter(games, (g) => g.points);



Reducing	with	Function	Literals

• Find	out	if	all	of	the	booleans in	a	list	are	true
reduce(bools, (memo, b) => memo === true && b === true, true)

• Find	the	longest	string	in	a	list
reduce(strs, (memo, s) => {

if (memo.length <= s.length) {
return s;

} else {
return memo;

}
}, “”);



Hands	on

• Call	the	filter	function	with	a	list	called	“nums”,	and	a	second	
argument	that	is	a	function	literal.
• You	should	create	the	function	literal,	and	filter	out	all	of	the	numbers	
that	are	odd,	keeping	only	even	numbers	in	this	list
• You	should	be	able	to	do	this	without	knowing	what	is	in	the	nums list



Hands	on	2

• Call	the	map	function	with	a	list	called	“strs”	and	transform	this	list	of	
strings	into	only	the	first	character	of	the	string.
• Remember:	substr is	a	string	method	that	takes	in	two	arguments,	
the	start	index	and	the	length	of	the	substring.
• Ex:
• “Hello”.substr(0, 2) === “He”
• let s: string = “Test”
• s.substr(1, 2) === “es”


