

Objectives

* Function Review

* Recursion Strategies
* List review

* Classes

* Objects

Function Review

Defining Functions
* Syntax:

let <name> = (<parameters>): <return type> => {

//function body
}s

* Example

let valentine = (name : string) : string =>{

return “Happy Valentine’s Day,
+name+>!11”7;

s

Calling Functions
* Syntax:

<name> (<arguments>);

* Example:
let card :

print(valentine(“Izzi”));

string = valentine(“Mason™);

valentine(“Brooks”);

Strategies for Solving Recursion

* Draw it out
 Work backwards

* Analyze the problem
* What is the base case?
 What are the other cases?
* What is really happening each time we call the function?

Analyzing Recursion

Base
Case

Recursive
Case

let bottles = (b: number): string => {

gE—

=

—
gam—

=

}s

if (b <= 0) {
return "No more bottles left on the wall :(";
} else {

let onelLess: number = b - 1;

return b + " bottles of water on the wall.

down pass it around. + oneless + " bottle of water on the wall!

+ bottles(b - 1);
} '\ .
Recursive

Call

+ b + " bottles of water.

Take one

List Toolkit

Function Name Example use
cons(<value>, <list>) Combining one value let groceries: List<string>;
ith a li f groceries = cons("zebra cakes", cons("gold fish", cons("juice", null)));
with a listto formanew . ¢ groceries);
list
first(<list>) Retrieving the first value le‘F itt'emlz string= first(groceries);
from a list print(iteml);
rest(<list>) Getting the list that 1e‘F stillNeed : List<s’Fring>;
foll e et stillNeed= rest(groceries);
ollows the Tirst item print(stillNeed);

listify(<comma separated values>) Creating lists with several 1et groceries: List<string>;
groceries= listify(“zebra cakes”, “gold fish”, “juice”);

values as arguments ST reRa e

List Practice: What does foo do?

let numbers: List<number> = listify(1, -7, 5, -100);
let foo = (list: List<number>): List<number> => {

if (list === null) { Strategy: Draw it out

return null;
ES-E1 55 £ £

} else {

let current : number = first(list);

if (current >= 0) {

return cons(current, foo(rest(list)));

o 5N EN-EO

return foo(rest(list));

¥
print(numbers);

print(foo(numbers));

What is a Class?

* Classes are blue prints for
objects

* A class is a set of properties

* In a class definition we have
* Key word: class

* Name for the class
e Usually starts with a capital letter

* Variables given default values

* Syntax:

class Name {

}
* Example:

class BankAccount {

What is an Object?

* An object is a specific implementation of a class
* We can have many objects of the same class type

* Objects of the same class have the same properties but can have
different values for those properties

Creating New Objects

* To create a new object we use the following syntax:
let name : ClassName = new ClassName();

* Example:

let gates : BankAccount = new BankAccount();

Accessing Object Properties

* To change or access a property of an object, we use the following
syntax:
objectName.property = value;
print(objectName.property);
let temp : type= objectName.property;

let gates: BankAccount = new BankAccount();
gates.user= “Bill Gates”;

gates.savings= 867530900000;

let userOfAccount : string = gates.user;

Objects Summary

Creating New Objects

* Syntax:

let name : ClassName = new ClassName();

* Example:

let broke : BankAccount = new BankAccount();

Accessing Properties
* Syntax

objectName.property=value;

print(objectName.property);

* Example

broke.user=“sganci”;

print(broke.user + “has “+ broke.savings+”
in savings”);

Classes vs. Objects

Class Object
* General blue prints * Specific instances
° IE)(: * Ex:

let yum: Food = new Food();
class Food {
yum.name= “pizza”;
name : string = “food name”;
yum.cal= 500;
cal : number = 0;
yum.healthy= false;

healthy : Boolean = false;
let meh: Food = new Food();
meh.name= “salad”;
meh.cal=150;
meh.healthy= true;

Class Practice

e Create a class called Movie

* The class should have the following properties:
* Atitle of type string with a default value of “movie title”
* A genre of type string with a default value of “movie genre”
* A rating of type number with a default value of 0

* After you have written the Movie class, try to create some Movie
objects using your favorite movies as inspiration ©

Class Definition

—

Properties

Objects

v

Movie {
title: string
genre: string
rating: number

.
-
T

let fave:
fave.title
fave.genre
fave.rating

best: Movie
best.title
best.genre

best.rating

Spooky:
spooky.title
spooky.genre = "1
spooky.rating = 3;

print(spooky);
print(fave);
print(best);

title
genre

rating

title
genre

rating

title
genre

rating

Cloverfield Paradox
Thriller

3

When Harry Met Sally
Romantic Comedy

)

The Wedding Singer
Romantic Comedy

5

Date Night Dilemma

* You and your crush are hanging out (score). You have a huge list of
movies to choose from. Let’s write a function to help you narrow
down your choices

* Function requirements:
* Name: dateMovie
* Input: should take in a list of movies
e Output: a list of movies that have a genre of “Romantic Comedy”

movies: List<Movie> = listify(fave, spooky, runForrest,

dateMovie = (movies: List<Movie>): List<Movie>

11) {

current: Movie = first(movies);
if (current.genre === "Romantic Comedy") {

n cons(current, dateMovie(rest(movies)));

Tur
} else {

return dateMovie(rest(movies));

print(movies);
print(dateMoviel(movies|));

title genre rating
When Harry Met Sally Romantic Comedy 5
Cloverfield Paradox Thriller 3
Forrest Gump Drama 5
The Wedding Singer Romantic Comedy 5

null

title genre rating
When Harry Met Sally Romantic Comedy 5
The Wedding Singer Romantic Comedy 5

null

st<Mov

