
Object-Oriented
Programming

Lecture 17

Data Buddies Survey

What is it?
○ Anonymous survey provided by CRA

open now through Oct. 31st
Why is it important?

○ Your feedback gives department real-
time data on curriculum, pedagogy,
student support and cultural climate
from student POV

What’s in it for you?
○ Completion of survey means raffle entry

and chance to win Amazon gift card (dept to

raffle more than $1K in gift cards)

Check your email for more details

Undergraduate Survey
http://bit.ly/CSundergraduate

Graduate Survey
http://bit.ly/CSgraduate

http://bit.ly/CSundergraduate
http://bit.ly/CSgraduate

Announcements

• PS04 – Linked List Functions
• Due Friday at 11:59pm
• Only five functions… but they're conceptually very challenging. Start today.

• Next WS will go out soon!
• More practice with recursion

PollEv: Given the class and functions below, what is the
output when the code right runs?
class Point {

x: number = 0;
y: number = 0;

}

function shiftX(p: Point, amount: number): void {
p.x = p.x + amount;

}

function toString(p: Point): string {
return p.x + ", " + p.y;

}

let a: Point = new Point();
a.x = 110;
a.y = 110;
shiftX(a, 10);
print(toString(a));

let b: Point = new Point();
b.x = 401;
b.y = 401;
shiftX(b, -10);
print(toString(b));

Hands-on #1) Refresher practice working with objects

• In lec-17 / 00-simple-class-app.ts:

1. Initialize the variable a to be a new Point object.

2. Assign different values to a's x and y properties.

3. Print a's x and y properties in the format of: "<x>, <y>"

• Check-in on PollEv.com/comp110 once complete.

a = new Point();
a.x = 110;
a.y = 110;
print(a.x + ", " + a.y);

Review of Classes and Objects

• A class defines a new Data Type
• The class definition specifies properties

• Instances of a class are called objects
• To create an object you must use the new keyword: new <Classname>()

• Every object of a class has the same properties but has its own values

• Objects are reference-types
• variables do not hold objects, but rather references to objects

Object-oriented Programming

• So far we've used objects as compound data types
• i.e. to model a row of data in a spreadsheet

• We've written functions, separate from classes, that operate on objects

• The only thing we've been able to do with an "object" is access and assign
values to its properties

• Object-oriented programming allows us to give objects capabilities
• We'll do this with two special kinds of functions: methods and constructors

Functions vs. Methods

function sayHello(): void {
print("Hello, world");

}

1. Let's define a silly function.

sayHello();

2. Once defined, we can then call it.

let a: Point = new Point();
a.sayHello();

4. Once defined, we can call this
method on any Point object:

class Point {
// ... properties elided...

sayHello(): void {
print("Hello, world");

}
}

3. Now, let's define that same function as
a method of the Point class.

Introducing: Methods

• A method is a function defined in a
class.
• Everything you know about a function's

parameters, return types, and
evaluation rules are the same with
methods.

• Syntactically, the only difference is you
do not write the keyword
"function".

• Once defined, you can call a method
on any object of that class using the
dot operator.
• Just like how properties were accessed

except followed by parenthesis and any
necessary arguments

• Methods have one special feature
beyond plain functions...

class Point {

// Properties Elided

<name>(<parameters>): <returnType> {
<method body>;

}

}

let a: Point = new Point();
print(a.methodName());

Follow-along: Simple Method App

• Let's implement and call the sayHello
method example from previous slides
in 01-simple-method-app.ts

class Point {
// ... properties elided...

sayHello(): void {
print("Hello, world");

}
}

let a: Point = new Point();
a.sayHello();

Method's Special Feature:

Methods can refer to the object the method was called on.

Consider this plain function.
Notice that its parameter p is
a reference to a Point object.

function toString(p: Point): string {
return p.x + ", " + p.y;

}

To call it, we would pass a
reference to a Point object as an
argument.

let a: Point = new Point();
print(toString(a));

It turns out we can write a
method that does the same
thing and it can be called like the
example to the right.

How can this magic work???

let a: Point = new Point();
print(a.toString());

Method's Special Feature:

Methods can refer to the object the method was called on.

When a method is called, inside of the
function, a special "variable" is initialized

named this

The this keyword refers to the object
the method was called upon.

class Point {

// ... Properties Elided ...

toString(): string {
return this.x + ", " + this.y;

}

}

let a: Point = new Point();
a.x = 110;
a.y = 110;
print(a.toString());

When the above code jumps to toString, this
will refer to the same Point object a refers to.

let b: Point = new Point();
b.x = 401;
b.y = 401;
print(b.toString());

When the above code jumps to toString, this
will refer to the same Point object b refers to.

Follow-along: Practice with the this keyword

• In 02-this-keyword-app.ts...

1. At TODO#1, define the
toString method to the right.

2. In the main function, at TODO's
#2 and #3, call the toString
method on Points a and b
respectively.

class Point {

// ... Properties Elided ...

toString(): string {
return this.x + ", " + this.y;

}

}

Hands-on: Practice with the this keyword

• In 02-this-keyword-app.ts, let's make it easy to shift a Point's x property.

1. At TODO#4, define a method named shiftX, that has a single number
parameter named amount and a void return type.

2. Increment the x property of the object shiftX is called on by amount.

3. Call shiftX on Points a and b in the main function.

4. Once you've tested that it works, check-in on PollEv.com/comp110

shiftX(amount: number): void {
this.x = this.x + amount;

}

b.shiftX(10);

Follow-Along: Distance Method

• Let's add a method to
compute the distance
between two points.

• We'll specify the 2nd point
as a parameter named
other.

• We'll also make use of
some special Math
functions:
• Math.pow(x, n) raises x to

the nth

• Math.sqrt(x) computes
square root

class Point {
// … elided …
distance(other: Point): number {

let xDelta2: number = Math.pow(other.x - this.x, 2);
let yDelta2: number = Math.pow(other.y - this.y, 2);
return Math.sqrt(xDelta2 + yDelta2);

}
}

// Calling the distance method
print(a.distance(b));

Why have both functions and methods?

• Different schools of thought in functional programming-style (FP) versus
object-oriented programming-style (OOP).
• Both are equaly capable, but some problems are better suited for one style vs. other.

• FP tends to shine with data processing problems
• Data analysis programs like weather stats and cpu hat heist are natural fits

• OOP is great for graphics, long-running programs / simulations, systems

• Methods allow us to build and package functionality into objects.
• You don't need to import extra functions to work with an object, they are bundled.
• As programs grow in size, methods and OOP have some extra capabilities to help

teams of programmers avoid accidental errors. You'll see this in 401!

Constructors
• An object's properties must be initialized

before the object is usable

• A constructor allows us to both
1. Specify unique initial values of properties

upon construction
2. Require certain properties are initialized

• A constructor is just a special function
• Does not use the keyword "function"
• Name is constructor
• Special, self-referencing variable named this
• No return type

• A class' constructor is called each time the
new <Classname> expression is
evaluated.

class Point {

x: number;
y: number;

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}

}

Defining a constructor

After

let a: Point = new Point(10, 0);

Before

let a: Point = new Point();
a.x = 10;
a.y = 0

Follow-along: Constructors

• Let's open 03-constructor-app.ts

• We'll add the constructor from the previous slide.

• Then we'll need to update where we call the constructor from.

Addition Assignment Operator

• Changing a number variable's value by some amount in this way:

x = x + amount;

• TypeScript and many other languages, have a built in
"addition assignment" operator:

x += amount;

• The two statements above achieve the same outcome.

• There are subtraction assignment -=, multiplication assignment *=,
concatenation assignment +=, operators that work just the same way, as well.

toString is a "Magic Method"

• We deliberately defined the toString method earlier using a convention.

• Any class that has a method named toString, with no parameters, and a
return type of string, has a superpower…

• We can print an object directly:

let a: Point = new Point(5, 10);
print(a); // toString is "automagically called"
let s: string = "a: " + a; // toString is "automagically" called
print(s);

