Recursive Data Types, null,
and Linked Lists

Lecture 16

"hello" ' "world" ' null
data next data next

/“CRA

Data Buddies Survey o =

Undergraduate Survey

http://bit.ly/CSundergraduate What is it?

O Anonymous survey provided by CRA

open now through Oct. 31st
Why is it important?

o Your feedback gives department real-
time data on curriculum, pedagogy,
student support and cultural climate
from student POV

What’s in it for you?
O Completion of survey means raffle entry

and chance to win Amazon gift card (dept to
raffle more than S1K in gift cards)

Graduate Survey
http://bit.ly/CSgraduate

***Check your email for more details™**

http://bit.ly/CSundergraduate
http://bit.ly/CSgraduate

Announcements

e Women and Minorities in CS — Info Session & Discussion
 Monday 10/23 at 5pm in SNO11

* PS3 Due Tonight

* Wednesday (tomorrow) Office Hours Close at 5pm for Fall Break
* No review session

Warm-up on References

Compound Data Type Properties

* So far we've focused on classes with value-type properties, such as:

* string

* number

* boolean class Person {
name: string;
pets: Dogl[];

* Properties can also be reference types, like: !
® arrays class Dog {
* objects name: string;

breed: string;

}

Recursive Data Types

* Properties can refer to other class Node {

objects of the same type data: string;
next: Node;

¥

 Notice the class Node left. It has
a property named next and its
value must be... another Node.

. T_hls aIIoY'vs u§ t.? form a Lmkgd "hello" world"
List or a "chain" of Node objects. data ext data next

Node Node

Linked List

* A classic, simple data structure in Computer Science

* Formed by chaining together a sequence of Node objects
* The first node is referred to as the head

* We will work with it today for pedagogical purposes in exploring
e Whatisnull?
* More advanced uses of references
* Recursive data types

"hello" ' "world" ' null
data next data next

Node Node

Where does a Linked List end?

* In the class to the right, if a Node refers to a next
Node, and the next Node refers to another next
Node, how does it end?

* |In a linked list, the very last Node's next value will
refer to null which means nothing or "there is no
next Node"

* To permit the next Node to be a null value,
TypeScript requires us to give it a special type
(next slide)

class Node {
data: string;

next: Node;

"world" '
data next

Node

Possibly null References (1/3)

* Because the next property may refer
to another Node OR null, the type
of next is specified as:

class Node {
Node | null data: string;

next: Node | null;

* Notice this looks like the boolean OR }
operator | | butis only a single
vertical bar.

* Now our linked list's last Node can be
assigned a null reference.

Possibly null References (2/3)

* TypeScript helps us avoid errors
when we declare the next
property's type to be Node | null

aNode: Node = Node(); * Notice in the example left, we are

[ts] Object is possibly 'null’. prevented from accessing the data
property of the next Node because
the next node is possibly null.

(property) Node.next: Node |

print(aNode.next.data);

* Other languages (like Java) do not
provide this protection which gives
way to "null pointer" errors.

Handling possibly null References (3/3)

* Whenever you access a reference whose type is "<class> | null”, you
must test to ensure the value is not null in order to access it.

let aNode: Node = new Node();
if (aNode.next !== null) {

print(aNode.next.data);

¥

* The above code compiles because TypeScript is smart enough to know
that inside of this if-then statement aNode . next cannot be null.

let a: Node = new Node();
a.data "Linked";
a.nhext null;

Follow-Along:

let b: Node = new Node();

Constructing a o.data = "Lists';

b.next

LlnkEd I_lSt let c: Node = new Node();

c.data R -

c.next b;

if (c.next !== null && c.next.next !== null) {
print(c.data);
print(c.next.data);
print(c.next.next.data);

hull

data next data next data next

Node Node Node

Forming a Human Linked List

e Live demo with UTAs as Nodes
 The first Node will be the "tail" and its next is null

* Subsequent Nodes will place one hand on the next Node's shoulder

Jane ' John ' Sally ' null
data next data next data next

Node Node Node

Finding the length of a Human Linked List

Jane ' John ' Sally ' null
data next data next data next

Node Node Node

Finding the length of a Human Linked List

What is
your
length?

Sally ' null
data next

Node Node Node

Finding the length of a Human Linked List

WHEIES What is

your

your
length?

length?

Sally ' null
data next

Node Node Node

Finding the length of a Human Linked List

WHEIES

your
length?

Sally ' null
data next

Node Node Node

Finding the length of a Human Linked List

Sally ' null
data next

Node Node Node

Finding the length of a Human Linked List

Sally ' null
data next

Node Node Node

Hands-on: Implement the Length Function

1. Open lecl6's list-functions.ts and 01-list-playground-app.ts

2. If the node's next property is a null reference, return 1

3. Otherwise, return 1 + the result of calling length with the next node
4. Check-in when your length function is properly implemented

5. Done? Try adding an additional Node to the list in the playground's
makelList function

export function length(head: Node): number {
if (head.next === null) {
return 1;
} else {

return 1 + length(head.next);

¥

Finding the length imperatively with a loop

* How might we address this without function lengthLoop(node: Node): number {
recursion? let count: number = 1;
let current: Node = node;
while (current.next !== null) {
. current = current.next;
* We can walk the list Node-by-Node CoUNt++;
until the next node is null and count }
up by 1 each time. return count;

* This is an example of when a single
reference-type variable is reassigned
to many different objects

-inding the length

function lengthLoop(node: Node): number {

m :)erat|ve|y > let count: number = 1;

let current: Node = node;
while (current.next !== null) {

current = current.next;
Cou nt 1 count++;
}

return count;
node I_I__l

Sally ' null
data next

Node

We enter the function with node referring to the first node in our list. The count variable is initialized to 1.

function lengthLoop(node: Node): number {

ding the length

" let count: number = 1;
Oeratlvely let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}

return count;

v | -
data next

Node

The current variable is setup and assigned a reference to the same object as the node parameter refers to.

ding the length

function lengthLoop(node: Node): number {

" let count: number = 1;
Oeratlvely let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}

return count;

v | -
data next

Node

The current node's next reference is not null, so we'll enter the while loop next.

-inding the length

function lengthLoop(node: Node): number {

» " let count: number = 1;
m Oeratlvely let current: Node = node;

while (current.next !== null) {

> current = current.next;
Cou nt 1 count++;

}

return count;
node I_I__l current El

Sally ' null
data next

Node

The current Node variable is reassigned to be its next Node (the 2" node in this case).

-inding the length

function lengthLoop(node: Node): number {

» " let count: number = 1;
m Oeratlvely let current: Node = node;

while (current.next !== null) {

current = current.next;
Cou nt 2 count++;
}

return count;
node I_I__l current El

Sally ' null
data next

Node

The count variable is incremented because we have walked to another node.

-inding the length
imperatively

count
node I_I__l current El

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}

return count;

Sally ' null
data next

Node

The while condition is tested again. Is the current Node's next property null? No, so we enter the loop.

-inding the length

function lengthLoop(node: Node): number {

» " let count: number = 1;
m Oeratlvely let current: Node = node;

while (current.next !== null) {

current = current.next;
Cou nt 2 count++;
}

return count;
node I_I__l current

Sally ' null
data next

Node

Current is reassigned to be a reference to its next Node.

-inding the length

function lengthLoop(node: Node): number {

m :)erat|VE|y let count: number = 1;

let current: Node = node;
while (current.next !== null) {

current = current.next;
Cou nt 3 count++;
}

return count;
node I_I__l current

Sally ' null
data next

Node

The count variable is incremented by 1.

-inding the length
imperatively let current: Node - nede;
while (current.next !== null) {

current = current.next;
Cou nt 3 count++;
}

return count;
node I_I__l current

function lengthLoop(node: Node): number {

Sally ' null
data next

Node

We test again. Is the current Node's next property null? Yes, so we do not loop again.

-inding the length
imperatively

count
node I_I__l current

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}

return count;

Sally ' null
data next

Node

Finally, count is returned to the caller of lengthLoop.

Generating a string Representation of the List

* Let's write a function with the following requirements.

 When we call with a tail node (its next property is null), it should return
the node's data concatenated with "-> null". For example:

toString(Sally ' null) returns "Sally -> null"

* When we call with a non-tail node, it should ultimately return a string with
every node's data separated by -> arrows and end with null.

toString(' Sally = null) returns "John -> Sally -> null"

Hands-on: Generating a string Representation

1. In 01-list-playground's main, try:

print(toString(list));
2. Inthe toString function of list-functions.ts...

3. If the node's next property is null, use concatenation to return:
"<node's value> -> null”

4. Otherwise, use concatenation and recursion to return:
"<node's value> -> <toString of the next node>"

5. Check-in on PollEverywhere when complete

export function toString(node: Node): string {
if (node.next === null) {
return node.data +
} else {

-> null”;

return node.data + -> +

toString(node.next);

Accessing the nth Index

* With an array we can return the 0-indexed nth element using:
e a[0], a[1], and so on...

* Let's implement a get function with the same semantics and the following
signature:

get(node: Node, i: number): string | null

* For example:
« get(list, @) returns"Jane"
« get(list, 2) returns "Sally"
« get(list, 40) returns null

Jane ' John ' Sally ' null
data next data next data next

Accessing the nth Index: There are 2 base cases

1. Isi===07?
1. Yes: we've found the ith Node!

2. No, i>07?Is the next node null?
1. Yes: thereis noith Node!

* No, the next node is not null. So let's try calling get again on the next
node and subtract 1 fromi.

Follow-along: Implementing the get function

export function get(node: Node, i: number): string | null {
if (1 === 0) {
return node.data;
} else if (node.next === null) {

return null;
} else {
return get(node.next, i - 1);

}
}

Challenge Functions
* Copying a List

* Appending to a List

* Reversing a List

 Want a challenge? Try implementing the remaining functions in
list-functions.ts

Challenge function solutions

COpPY

export function copy(node: Node): Node {
if (node.next === null) {
return node;
} else {

return link(node.data, copy(node.next));

}

append

export function append(data: string, node:

if (node.next === null) {
let tail: Node = new Node();
tail.data = data;
nhode.next = tail;
} else {
append(data, node.next);

}

Node): void {

reverse

export function reverse(node: Node): Node {
if (node.next === null) {
return node;
} else {
let reversed: Node = reverse(node.next);

node.next.next = node;
node.next = null;
return reversed;

