
Recursive Data Types, null,
and Linked Lists

"hello"
data next

"world"
data next

null

Lecture 16

Data Buddies Survey

What is it?
○ Anonymous survey provided by CRA

open now through Oct. 31st
Why is it important?

○ Your feedback gives department real-
time data on curriculum, pedagogy,
student support and cultural climate
from student POV

What’s in it for you?
○ Completion of survey means raffle entry

and chance to win Amazon gift card (dept to

raffle more than $1K in gift cards)

Check your email for more details

Undergraduate Survey
http://bit.ly/CSundergraduate

Graduate Survey
http://bit.ly/CSgraduate

http://bit.ly/CSundergraduate
http://bit.ly/CSgraduate

Announcements

• Women and Minorities in CS – Info Session & Discussion
• Monday 10/23 at 5pm in SN011

• PS3 Due Tonight

• Wednesday (tomorrow) Office Hours Close at 5pm for Fall Break
• No review session

Warm-up on References

Compound Data Type Properties

• So far we've focused on classes with value-type properties, such as:
• string

• number

• boolean

• Properties can also be reference types, like:
• arrays

• objects

class Person {
name: string;
pets: Dog[];

}

class Dog {
name: string;
breed: string;

}

Recursive Data Types

• Properties can refer to other
objects of the same type

• Notice the class Node left. It has
a property named next and its
value must be... another Node.

• This allows us to form a Linked
List or a "chain" of Node objects.

class Node {
data: string;
next: Node;

}

"hello"
data next

Node

"world"
data next

null

Node

Linked List

• A classic, simple data structure in Computer Science

• Formed by chaining together a sequence of Node objects
• The first node is referred to as the head

• We will work with it today for pedagogical purposes in exploring
• What is null?
• More advanced uses of references
• Recursive data types

"hello"
data next

Node

"world"
data next

null

Node

Where does a Linked List end?

• In the class to the right, if a Node refers to a next
Node, and the next Node refers to another next
Node, how does it end?

• In a linked list, the very last Node's next value will
refer to null which means nothing or "there is no
next Node"

• To permit the next Node to be a null value,
TypeScript requires us to give it a special type
(next slide)

class Node {
data: string;
next: Node;

}

"world"
data next

Node

Possibly null References (1/3)

• Because the next property may refer
to another Node OR null, the type
of next is specified as:

Node | null

• Notice this looks like the boolean OR
operator || but is only a single
vertical bar.

• Now our linked list's last Node can be
assigned a null reference.

class Node {
data: string;
next: Node | null;

}

Possibly null References (2/3)

• TypeScript helps us avoid errors
when we declare the next
property's type to be Node | null

• Notice in the example left, we are
prevented from accessing the data
property of the next Node because
the next node is possibly null.

• Other languages (like Java) do not
provide this protection which gives
way to "null pointer" errors.

Handling possibly null References (3/3)

• Whenever you access a reference whose type is "<class> | null", you
must test to ensure the value is not null in order to access it.

• The above code compiles because TypeScript is smart enough to know
that inside of this if-then statement aNode.next cannot be null.

let aNode: Node = new Node();
if (aNode.next !== null) {

print(aNode.next.data);
}

Follow-Along:
Constructing a
Linked List

let a: Node = new Node();
a.data = "Linked";
a.next = null;

let b: Node = new Node();
b.data = "Lists";
b.next = a;

let c: Node = new Node();
c.data = "!!!";
c.next = b;

if (c.next !== null && c.next.next !== null) {
print(c.data);
print(c.next.data);
print(c.next.next.data);

}

"Linked"
data next

null

Node

a

"Lists"
data next

Node

b

"!!!"
data next

Node

c

Forming a Human Linked List

• Live demo with UTAs as Nodes

• The first Node will be the "tail" and its next is null

• Subsequent Nodes will place one hand on the next Node's shoulder

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

What is
your

length?

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

What is
your

length?

What is
your

length?

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

What is
your

length?
1

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

What is
your

length?

2

Finding the length of a Human Linked List

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

3

Hands-on: Implement the Length Function

1. Open lec16's list-functions.ts and 01-list-playground-app.ts

2. If the node's next property is a null reference, return 1

3. Otherwise, return 1 + the result of calling length with the next node

4. Check-in when your length function is properly implemented

5. Done? Try adding an additional Node to the list in the playground's
makeList function

export function length(head: Node): number {
if (head.next === null) {

return 1;
} else {

return 1 + length(head.next);
}

}

Finding the length imperatively with a loop

• How might we address this without
recursion?

• We can walk the list Node-by-Node
until the next node is null and count
up by 1 each time.

• This is an example of when a single
reference-type variable is reassigned
to many different objects

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 1

We enter the function with node referring to the first node in our list. The count variable is initialized to 1.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 1

current

The current variable is setup and assigned a reference to the same object as the node parameter refers to.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 1

current

The current node's next reference is not null, so we'll enter the while loop next.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 1

current

The current Node variable is reassigned to be its next Node (the 2nd node in this case).

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 2

current

The count variable is incremented because we have walked to another node.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 2

current

The while condition is tested again. Is the current Node's next property null? No, so we enter the loop.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 2

current

Current is reassigned to be a reference to its next Node.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 3

current

The count variable is incremented by 1.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 3

current

We test again. Is the current Node's next property null? Yes, so we do not loop again.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Finding the length
imperatively

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

node

count 3

current

Finally, count is returned to the caller of lengthLoop.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}

Generating a string Representation of the List

• Let's write a function with the following requirements.

• When we call with a tail node (its next property is null), it should return
the node's data concatenated with "-> null". For example:

• When we call with a non-tail node, it should ultimately return a string with
every node's data separated by -> arrows and end with null.

Sally nulltoString() returns "Sally -> null"

Sally nulltoString() returns "John -> Sally -> null"John

Hands-on: Generating a string Representation

1. In 01-list-playground's main, try:

print(toString(list));

2. In the toString function of list-functions.ts…

3. If the node's next property is null, use concatenation to return:
"<node's value> -> null"

4. Otherwise, use concatenation and recursion to return:
"<node's value> -> <toString of the next node>"

5. Check-in on PollEverywhere when complete

export function toString(node: Node): string {
if (node.next === null) {

return node.data + " -> null";
} else {

return node.data + " -> " +
toString(node.next);

}
}

Accessing the nth Index

• With an array we can return the 0-indexed nth element using:
• a[0], a[1], and so on…

• Let's implement a get function with the same semantics and the following
signature:

get(node: Node, i: number): string | null

• For example:
• get(list, 0) returns "Jane"
• get(list, 2) returns "Sally"
• get(list, 40) returns null

Sally
data next

null

Node

John
data next

Node

Jane
data next

Node

Accessing the nth Index: There are 2 base cases

1. Is i === 0?
1. Yes: we've found the ith Node!

2. No, i > 0? Is the next node null?
1. Yes: there is no ith Node!

• No, the next node is not null. So let's try calling get again on the next
node and subtract 1 from i.

Follow-along: Implementing the get function

export function get(node: Node, i: number): string | null {
if (i === 0) {

return node.data;
} else if (node.next === null) {

return null;
} else {

return get(node.next, i - 1);
}

}

Challenge Functions

• Copying a List

• Appending to a List

• Reversing a List

• Want a challenge? Try implementing the remaining functions in
list-functions.ts

Challenge function solutions

copy

export function copy(node: Node): Node {
if (node.next === null) {

return node;
} else {

return link(node.data, copy(node.next));
}

}

append

export function append(data: string, node: Node): void {
if (node.next === null) {

let tail: Node = new Node();
tail.data = data;
node.next = tail;

} else {
append(data, node.next);

}
}

export function reverse(node: Node): Node {
if (node.next === null) {

return node;
} else {

let reversed: Node = reverse(node.next);
node.next.next = node;
node.next = null;
return reversed;

}
}

reverse

