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Data Buddies Survey

What is it? 
○ Anonymous survey provided by CRA 

open now through Oct. 31st
Why is it important? 

○ Your feedback gives department real-
time data on curriculum, pedagogy, 
student support and cultural climate 
from student POV

What’s in it for you? 
○ Completion of survey means raffle entry 

and chance to win Amazon gift card (dept to 

raffle more than $1K in gift cards)

***Check your email for more details***

Undergraduate Survey
http://bit.ly/CSundergraduate

Graduate Survey
http://bit.ly/CSgraduate

http://bit.ly/CSundergraduate
http://bit.ly/CSgraduate


Announcements

• Women and Minorities in CS – Info Session & Discussion
• Monday 10/23 at 5pm in SN011

• PS3 Due Tonight

• Wednesday (tomorrow) Office Hours Close at 5pm for Fall Break
• No review session



Warm-up on References



Compound Data Type Properties

• So far we've focused on classes with value-type properties, such as:
• string

• number

• boolean

• Properties can also be reference types, like:
• arrays

• objects

class Person {
name: string;
pets: Dog[];

}

class Dog {
name: string;
breed: string;

}



Recursive Data Types

• Properties can refer to other 
objects of the same type

• Notice the class Node left. It has 
a property named next and its 
value must be... another Node.

• This allows us to form a Linked 
List or a "chain" of Node objects.

class Node {
data: string;
next: Node;

}
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Linked List

• A classic, simple data structure in Computer Science

• Formed by chaining together a sequence of Node objects
• The first node is referred to as the head

• We will work with it today for pedagogical purposes in exploring
• What is null?
• More advanced uses of references
• Recursive data types
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Where does a Linked List end?

• In the class to the right, if a Node refers to a next 
Node, and the next Node refers to another next 
Node, how does it end?

• In a linked list, the very last Node's next value will 
refer to null which means nothing or "there is no 
next Node"

• To permit the next Node to be a null value, 
TypeScript requires us to give it a special type 
(next slide)

class Node {
data: string;
next: Node;

}
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Possibly null References (1/3)

• Because the next property may refer 
to another Node OR null, the type 
of next is specified as:

Node | null

• Notice this looks like the boolean OR 
operator || but is only a single 
vertical bar.

• Now our linked list's last Node can be 
assigned a null reference.

class Node {
data: string;
next: Node | null;

}



Possibly null References (2/3)

• TypeScript helps us avoid errors 
when we declare the next
property's type to be Node | null

• Notice in the example left, we are 
prevented from accessing the data 
property of the next Node because 
the next node is possibly null.

• Other languages (like Java) do not 
provide this protection which gives 
way to "null pointer" errors.



Handling possibly null References (3/3)

• Whenever you access a reference whose type is "<class> | null", you 
must test to ensure the value is not null in order to access it.

• The above code compiles because TypeScript is smart enough to know 
that  inside of this if-then statement aNode.next cannot be null.

let aNode: Node = new Node();
if (aNode.next !== null) {

print(aNode.next.data);
}



Follow-Along: 
Constructing a 
Linked List

let a: Node = new Node();
a.data = "Linked";
a.next = null;

let b: Node = new Node();
b.data = "Lists";
b.next = a;

let c: Node = new Node();
c.data = "!!!";
c.next = b;

if (c.next !== null && c.next.next !== null) {
print(c.data);
print(c.next.data);
print(c.next.next.data);

}
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Forming a Human Linked List

• Live demo with UTAs as Nodes

• The first Node will be the "tail" and its next is null

• Subsequent Nodes will place one hand on the next Node's shoulder
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Finding the length of a Human Linked List
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Finding the length of a Human Linked List
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Finding the length of a Human Linked List
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Finding the length of a Human Linked List
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Finding the length of a Human Linked List
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Finding the length of a Human Linked List
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Hands-on: Implement the Length Function

1. Open lec16's list-functions.ts and 01-list-playground-app.ts

2. If the node's next property is a null reference, return 1

3. Otherwise, return 1 + the result of calling length with the next node

4. Check-in when your length function is properly implemented

5. Done? Try adding an additional Node to the list in the playground's 
makeList function



export function length(head: Node): number {
if (head.next === null) {

return 1;
} else {

return 1 + length(head.next);
}

}



Finding the length imperatively with a loop

• How might we address this without 
recursion?

• We can walk the list Node-by-Node 
until the next node is null and count 
up by 1 each time.

• This is an example of when a single 
reference-type variable is reassigned 
to many different objects

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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We enter the function with node referring to the first node in our list. The count variable is initialized to 1.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The current variable is setup and assigned a reference to the same object as the node parameter refers to.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The current node's next reference is not null, so we'll enter the while loop next.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The current Node variable is reassigned to be its next Node (the 2nd node in this case).

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The count variable is incremented because we have walked to another node.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The while condition is tested again. Is the current Node's next property null? No, so we enter the loop.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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Current is reassigned to be a reference to its next Node.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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The count variable is incremented by 1.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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We test again. Is the current Node's next property null? Yes, so we do not loop again.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Finding the length 
imperatively
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Finally, count is returned to the caller of lengthLoop.

function lengthLoop(node: Node): number {
let count: number = 1;
let current: Node = node;
while (current.next !== null) {

current = current.next;
count++;

}
return count;

}



Generating a string Representation of the List

• Let's write a function with the following requirements.

• When we call with a tail node (its next property is null), it should return 
the node's data concatenated with "-> null". For example:

• When we call with a non-tail node, it should ultimately return a string with 
every node's data separated by -> arrows and end with null.

Sally nulltoString( )  returns "Sally -> null"

Sally nulltoString( ) returns "John -> Sally -> null"John



Hands-on: Generating a string Representation

1. In 01-list-playground's main, try:

print(toString(list));

2. In the toString function of list-functions.ts…

3. If the node's next property is null, use concatenation to return:  
"<node's value> -> null"

4. Otherwise, use concatenation and recursion to return:
"<node's value> -> <toString of the next node>"

5. Check-in on PollEverywhere when complete



export function toString(node: Node): string {
if (node.next === null) {

return node.data + " -> null";
} else {

return node.data + " -> " + 
toString(node.next);

}
}



Accessing the nth Index

• With an array we can return the 0-indexed nth element using: 
• a[0], a[1], and so on…

• Let's implement a get function with the same semantics and the following 
signature:

get(node: Node, i: number): string | null

• For example: 
• get(list, 0) returns "Jane"
• get(list, 2) returns "Sally"
• get(list, 40) returns null
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Accessing the nth Index: There are 2 base cases

1. Is i === 0? 
1. Yes: we've found the ith Node!

2. No, i > 0? Is the next node null? 
1. Yes: there is no ith Node!

• No, the next node is not null. So let's try calling get again on the next
node and subtract 1 from i.



Follow-along: Implementing the get function

export function get(node: Node, i: number): string | null {
if (i === 0) {

return node.data;
} else if (node.next === null) {

return null;
} else {

return get(node.next, i - 1);
}

}



Challenge Functions

• Copying a List

• Appending to a List

• Reversing a List

• Want a challenge? Try implementing the remaining functions in 
list-functions.ts



Challenge function solutions



copy

export function copy(node: Node): Node {
if (node.next === null) {

return node;
} else {

return link(node.data, copy(node.next));
}

}



append

export function append(data: string, node: Node): void {
if (node.next === null) {

let tail: Node = new Node();
tail.data = data;
node.next = tail;

} else {
append(data, node.next);

}
}



export function reverse(node: Node): Node {
if (node.next === null) {

return node;
} else {

let reversed: Node = reverse(node.next);
node.next.next = node;
node.next = null;
return reversed;

}
}

reverse


