
Values vs. References
Exporting and Importing

Lecture 09

Midterm Prep

• WS3 - Due Monday 9/25

• PS2 - Due Tuesday 9/26

• Once completed: you should work through the study guides and their
associated keys posted to comp110.com home page.

• Review Session is Weds 9/27 from 5-7pm in GSB100

Warm-up: What are the elements of a?

let a: number[] = [2]; // Notice initial element 2
let i: number = 0;

while (i < 3) {
a[a.length] = (i + 1) * 2;
i++;

}

print(a);

Answer: 2, 2, 4, 6

let a: number[] = [2]; // Notice initial element 2
let i: number = 0;

while (i < 3) {
a[a.length] = (i + 1) * 2;
i++;

}

print(a);

How do we append an element to an array?

• Given an array a, what is the next index needed to append?
• When it is empty, or has 0 elements, the next index is 0
• When it has 1 element, the next index is 1
• When it has 2 elements, the next index is 2

• Because of 0-based indexing, we can use the # of elements in an array as
the index to use to append a value to the array.

• Append to an array:

a[a.length] = <value>;

Warm-up:
What is printed?

class Person {
name: string;

}

let a: number = 1;
let b: number = a;
a = 2;
print("b: " + b);

let seanCombs: Person = new Person();
seanCombs.name = "Sean Combs";

let puffDaddy: Person = seanCombs;
seanCombs.name = "Diddy";

print("Name: " + puffDaddy.name);

Warm-up:
What is printed?

Answer:
b: 1
Name: Diddy

class Person {
name: string;

}

let a: number = 1;
let b: number = a;
a = 2;
print("b: " + b);

let seanCombs: Person = new Person();
seanCombs.name = "Sean Combs";

let puffDaddy: Person = seanCombs;
seanCombs.name = "Diddy";

print("Name: " + puffDaddy.name);

Value Types Visualized

let a: string = "hello";

let b: string = a;

a = "world";

"hello"a

"hello"b

"world"a

Notice: b was assigned a. This copied the string "hello" to b.

The variable a was then assigned the string "world".

This had no impact on b because string variables are value types.

Reference Types Visualized

let a: Person = new Person();

a.name = "Sean Combs";

let b: Person = a;

a.name = "Diddy";

a

b

Notice: When the a variable is assigned a new Person object, it is assigned reference to the Person
object.

When b is assigned a's value, the reference is copied, not the object. Variables a and b now refer to
the same object.

Changing property values via either a or b will be visible from the other because they are aliases of
one another.

name:

Person

"Sean Combs""Diddy"

Value Types vs. Reference Types

• Primitive types (number, string, boolean) are value types
• Variables hold copies of actual values.

• Assigning one variable to another copies the value.

• Changing a copied variable's value does not impact original or vice-versa.

• Composite types (classes, arrays) are reference types
• Variables hold references to actual values.

• Assigning one variable to another copies the reference. Both variables now
refer to the same value in memory.

• Modifying a referenced value will impact all references to it.

When would you ever have multiple variables
referring to the same object or array?
• When passing an object or array to a function's parameter!

import "introcs";

function main(): void {
let numbers: number[] = [1, 2];
append(numbers, 3);
print(numbers); // Elements are now: 1, 2, 3

}

function append(a: number[], n: number): void {
a[a.length] = n;

}

main();

Aside: A string is an array of characters!

let name: string = "Kris";

print(name[0]);

print(name[name.length – 1]);

0 1 2 3

K r i s

Breaking a Project into Multiple Files

• You can export functions and classes from one TypeScript file

export function (…

export class {…

• And import them into another TypeScript file

import { <names>, <of>, <functions/classes> } from "./<file>";

• Example:

import { Game, mapPoints, reduceSum } from "./library";

Referencing Imported Files

• Where you see the dot-slash in "./library", this means
"from within the same folder I am in, import the library.ts file"
• Note: you do not specify the .ts file extension

• To move up a folder, the dot-dot-slash in "../super", means,
"move up to my parent folder, and import super.ts from there"

• To move up to a parent folder, and back down to a sibling folder:
"../ps01-adventure/index-app" to reference the file index-app.ts in
Problem Set 01.

• No stress: when you need to do imports/exports in problem sets, we'll
guide you through it.

Library Files

• As we move further into the semester we will break our projects into
library files whose classes and functions can be reused by many
different apps.

• Typically these files will not need to import the introcs library, unless
your library functions need the print/prompt functions.

• Let's take a look at an example library file in lec09 / library.ts

Follow-along: Let's export/import
filterByOutcome
• In library.ts, add the export keyword before the function

filterByOutcome

• In 02-filter-map-reduce-app.ts, add the filterByOutcome function to
the list of items imported from library.ts:

export function filterByOutcome(games: Game[], outcome: string): Game[] {

import {
Game,
mapPoints,
reduceSum,
filterByOutcome

} from "./library";

Back to Working with Data

Warning! What you see past this point is not
necessary for completing PS02 – Weather Stats.

You'll need these concepts for PS03.

Filter-Map-Reduce Data Processing Pipeline

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

20

13
33

Game[]

Game[]
number[]

number

Filter

Of games that UNC won, how many points did the player score in total?

Map Reduce

We will write simple functions for each step in this process.

Filtering an Array
• Given an input array and selection criteria, return a new array

containing only the elements meeting the criteria.

• For example, filter games by outcomes starting with "W" (wins).

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

Game[]

Game[]

Filter

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Copy to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Game[]

input

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

Game[] Game[]

matchesinput

Filtering Algorithm
1. Setup an empty array to hold matches.

2. Work element-by-element through entire input array.
• Does this element meet the filtering criteria? Yes? Append it to matches!

3. Return matches array.

Outcome Points

L 76-67 4

W 95-75 20

W 97-57 13

L 103-100 9

L 77-62 22

Outcome Points

W 95-75 20

W 97-57 13

Game[] Game[]

matchesinput

return
matches

Follow-along

• In lec09 / 02-filter-map-reduce.ts's process function, let's declare a variable to hold an
array of the Games won, and initialize it by calling the filterByOutcome function imported
from library.ts

• Then, let's correctly implement the filterByOutcome function's selection criteria in lec09 /
library.ts:

let filtered: Game[] = filterByOutcome(games, "W");
print("Filtered: " + filtered.length);

export function filterByOutcome(games: Game[], outcome: string): Game[] {
let matches: Game[] = [];
let i: number = 0;
while (i < games.length) {

if (games[i].outcome[0] === outcome) {
matches[matches.length] = games[i];

}
i++;

}
return matches;

}

Note: each outcome property is a
string that looks like "W 99-97" or "L
90-89" for win/loss

Thus, games[i].outcome[0]
refers to the letter either "W" or "L".

Mapping Arrays
• Given an input array, return a new array containing all of the

elements of the input array "transformed" to a different value.

• For example, map from an array of Games to an array of points.

Outcome Points

W 95-75 20

W 97-57 13

20

13

Game[] number[]

mapPoints

Mapping Algorithm
1. Setup an empty array to hold the mapped values.
2. Work element-by-element through entire input array.

• Apply some "transformation" from input element to mapped element.
• In our example we are "transforming" a Game value to just its points value.

3. Return mapped array.

Outcome Points

W 95-75 20

W 97-57 13

Game[]

input

Mapping Algorithm
1. Setup an empty array to hold the mapped values.
2. Work element-by-element through entire input array.

• Apply some "transformation" from input element to mapped element.
• In our example we are "transforming" a Game value to just its points value.

3. Return mapped array.

Outcome Points

W 95-75 20

W 97-57 13

Game[] number[]

mappedinput

Mapping Algorithm
1. Setup an empty array to hold the mapped values.
2. Work element-by-element through entire input array.

• Apply some "transformation" from input element to mapped element.
• In our example we are "transforming" a Game value to just a points value.

3. Return mapped array.

Outcome Points

W 95-75 20

W 97-57 13

Game[] number[]

mappedinput

20

Mapping Algorithm
1. Setup an empty array to hold the mapped values.
2. Work element-by-element through entire input array.

• Apply some "transformation" from input element to mapped element.
• In our example we are "transforming" a Game value to just a points value.

3. Return mapped array.

Outcome Points

W 95-75 20

W 97-57 13

Game[] number[]

mappedinput

20

13

Mapping Algorithm
1. Setup an empty array to hold the mapped values.
2. Work element-by-element through entire input array.

• Apply some "transformation" from input element to mapped element.
• In our example we are "transforming" a Game value to just a points value.

3. Return mapped array.

Outcome Points

W 95-75 20

W 97-57 13

Game[] number[]

mappedinput

20

13
return
mapped

Hands-on: Call mapPoints

• From lec09 / 02-filter-map-reduce.ts

1. In the process function, declare a variable named mapped of type number[]

2. Assign its initial value to be the result of calling the mapPoints function
defined in library.ts using the filtered array as an argument.

3. Print the mapped array. It should look something like…
23,18,23,2,8,24…

4. Check-in on PollEv.com/comp110 once complete

let mapped: number[] = mapPoints(filtered);
print(mapped);

Reducing Arrays
• Given an input array, reduce it to a single value.

• For example, reduce an array of numbers to their sum.

• We've written reducing functions in the past two lectures!

20

13

number[]
reduceSum

33

number

Follow-along: Reducing points to a total.

• In lec09 / 02-filter-map-reduce.ts's process function

• Declare a variable of type number to hold the "reduced" total and
initialize it to the result of calling reduceSum with the mapped array.

let reduced: number = reduceSum(mapped);
print(reduced); // Total Points

Filter-Map-Reduce Data Processing Pipeline

Of games

Big idea: We can select any combo of a filter, map, and reduce sequence.
Result: (# Filters) x (# Maps) x (# Reduces) different combinations.

that UNC won

that UNC lost

with 3+ assists

with a block

etc

, what was the

points

assists

fouls

blocks

etc

total

average

min

max

etc

Game[] Game[]

Filter

Game[] number[]

Map

number[] number

Reduce

Follow-along: How many assists in games won?

• In library.ts, let's implement the mapAssists function:

• Then, add it to the import list of 02-filter-map-reduce-app.ts

• Finally, try calling mapAssists rather than mapPoints

export function mapAssists(games: Game[]): number[] {
let assists: number[] = [];
let i: number = 0;
while (i < games.length) {

assists[i] = games[i].assists;
i++;

}
return assists;

}

let mapped: number[] = mapAssists(filtered);

Follow-along: reduceAvg

• Let's introduce another reducing function in library.ts …

• … and import it in 02-filter-map-reduce-app.ts

• And swap it out for reduceSum….

export function reduceAvg(a: number[]): number {
return reduceSum(a) / a.length;

}

let reduced: number = reduceAvg(mapped);
print(reduced);

110 Words of Wisdom

• Write simple functions that have one job.

• Functions that do only one of filter, map, or reduce are better
than single mega-functions that do all three at once.

• Why?
• simpler to compose new functionality
• easier to reuse code you've already written
• fewer errors not having to reimplement algorithms

• Are there potential downsides to small functions versus a mega-functions?
• Potentially a slightly less optimal run-time, but only matters once you're working with data sets well

into the millions of data points. Even then, always start with small, simple, tried, and true… optimize
once you need to.

