
Classes, Types, and Objects
Lecture 6

npm run pull … npm run start … pollev.com/comp110



Announcements

• PS1 – Due Friday
• Full EC deadline is TODAY 11:59pm

• Partial EC on Thurs

• Due Friday at 11:59pm

• Review Session – Today 5-6pm

• Small Group Review Walk-in Hours FB008 – Thursday & Friday 2-6pm



Office Hours

• Located on the 0th floor of Sitterson Hall – Room 008

• 178 students have come to office hours in the past week

• Median wait time has been under 5 minutes – often immediately… 
…still better than Uber this semester.

• The UTA team is here to help you learn the material that does not make 
sense in class!

• Reminder: UTAs are the only authorized collaborators on problem sets.



Warm-up #1: What is the output of these two programs?

import "introcs";

function main(): void {
let x: number = 50;
if (x > 0) {

print("A");
} else if (x === 50) {

print("B");
}

}

main();

import "introcs";

function main(): void {
let x: number = 50;
if (x > 0) {

print("A");
}
if (x === 50) {

print("B");
}

}

main();

Left Right



Warm-up #1: What is the output of these two programs?

import "introcs";

function main(): void {
let x: number = 50;
if (x > 0) {

print("A");
} else if (x === 50) {

print("B");
}

}

main();

import "introcs";

function main(): void {
let x: number = 50;
if (x > 0) {

print("A");
}
if (x === 50) {

print("B");
}

}

main();

Left: Right: A, BA



Warm-up #2: 
Fill in the blank with the 
name of the function 
that can be called here.

function main(): void {
let result: string;
print("result is:");
result = ___________(1, 2);
print(result);

}

function a(x: number): number {
return x + x;

}

function b(x: number, y: number): number {
return x + y;

}

function c(x: number): string {
return "x is " + x;

}

function d(x: number, y: number): string {
return "x is " + x + " y is " + y;

}



Warm-up #2: 
Fill in the blank with the 
name of the function 
that can be called here.

function main(): void {
let result: string;
print("result is:");
result = ___________(1, 2);
print(result);

}

function a(x: number): number {
return x + x;

}

function b(x: number, y: number): number {
return x + y;

}

function c(x: number): string {
return "x is " + x;

}

function d(x: number, y: number): string {
return "x is " + x + " y is " + y;

}

Answer: d



Function Definition vs. Calling

Calling

clear();

print("Hello");

let x: number;

x = random(1, 2);

Definition

function clear(): void

function print(input: string): void

function random(lo: number, hi: number): number

Each function definition tells you how to call the function (name and parameters) 
and where you can call the function (return type).



Warm-up #3 – What is 
printed to the screen when 
this program runs?

import "introcs";

function main(): void {
let a: string;
a = b();

}

function b(): string {
print("c");
return "d";

}

main();



Warm-up #3 – What is 
printed to the screen when 
this program runs?

import "introcs";

function main(): void {
let a: string;
a = b();

}

function b(): string {
print("c");
return "d";

}

main();Answer: c



Why are data types important?

• Types communicate expectations and capabilities in our programs.

• Take the following variables, for example:

let x: number;
let y: number;

• What can we do with x and y?
• Assign number literals to each, i.e. 110 and 3.14
• Add them together, perform arithmetic
• Pass them to a function that accepts number parameters
• Generally: use them anywhere we can use a number expression

• How do we know we can do those things? Because their type is number.
• The operations we can carry out on string or boolean variables are different.



We can define our own data types!

• What if we want to "model" more complex concepts:
• Twitter Profiles

• Pizza Order

• Football Player Stats

• We can invent our own composite data types out of other types
• Like in chemistry where compounds are made of atoms… 

• number, string, and boolean are our atoms

• We define a data type with a class

• We call instances of a class objects



• That's a lie. Classes aren't actually visual templates.

• They're code specifications of a type of object.

• However, this is a useful analogy:

Class : Object :: A Twitter Profile : @KrisJordan's Profile

What is this? A Class!



Objects!

What are these?

(They're all Twitter profiles.)



How would we model a TwitterProfile in code?

class TwitterProfile {

name: string;
handle: string; 
bio: string;
showVine: boolean;
privateAccount: boolean;
followers: number;
following: number;

}

• We have not covered the concepts in the code below, yet, but I'll bet 
you can connect a few dots.

• These are all properties of the TwitterProfile class.



class TwitterProfile {
name: string;
handle: string; 
bio: string;
showVine: boolean;
privateAccount: boolean;
followers: number;
following: number;

}

Class
Object's
Each

properties are established by its



Defining a Class - "Inventing a Data Type"

class <ClassName> {

<propertyName>: <type>;

<propertyName>: <type> = <default value>;

…

}

• ClassNames begin with an uppercase letter

• Properties are declared inside of the class body
• These are like variable declarations without the let keyword

• Properties can be assigned default values

• "Every object of <ClassName> will have a <name> property of type <type>".
• "Every TwitterProfile will have a followers field of type number"



Defining a Class - Example

class Rectangle {

color: string = "Black";

width: number = 1.0;

height: number = 1.0;

}

• Here we are defining a class 
named Rectangle. 

• Every Rectangle object will have 
three properties:
• color, width, height

• In defining a class, we've invented 
a new type! We can now use it in 
our programs anywhere use a 
type. For example, a variable 
declaration:

let paper: Rectangle;



Hands-on #1: Define a Rectangle class

• Open lec06-objects / 00-object-
fundamentals-app.ts

• At TODO #1, before the main 
function, define the Rectangle class 
to the right.

• At TODO #2, in the main function, 
declare a variable of type Rectangle 
named origami.

• Check-in on PollEv.com/comp110 
once you've got this code. 

class Rectangle {

color: string = "Black";

width: number = 1.0;

height: number = 1.0;

}

let origami: Rectangle;



Constructing an Object

• How do we initialize this variable?

• Unlike simple data types, where 
declaring a variable reserves 
memory for it, composite types or 
"object types" require us to 
"construct a new object" in 
memory.

• We do this using the new keyword, 
followed by the class' name, 
followed by empty parenthesis (for 

now).

let paper: Rectangle;

paper = new Rectangle();



Memory
Constructing an Object

• When the new Rectangle() expression is 
reached,

• The processor constructs a new object in 
memory with space for each property.

• It also assigns default values to each 
property, if specified by the class.

• Finally, a reference to this object is returned 
and assigned to the paper variable.
• More on references soon.

paper = new Rectangle();

Rectangle
Object

color:

width:

height:

"Black"

1.0

1.0



Hands-on #2: Constructing a Rectangle Object
1. Still in lec06-objects / 00-object-

fundamentals-app.ts

2. After origami's variable declaration, 
initialize it by constructing a new 
Rectangle

3. Uncomment the rectToString function 
below TODO #3. 

4. Then try calling it from inside the main 
function and printing the return value.

5. Check-in on PollEv.com/comp110 once 
you've got "Black Rectangle is 1.0x1.0" 
printing in your browser.

origami = new Rectangle();

print(rectToString(origami));



MemoryReading Properties

• By referencing the Rectangle variable's name, 
followed by the dot operator, followed by the 
property name, we are saying:

"Hey paper, what is your width property's value? "

• General form:

<object>.<property>

print(paper.width);

Rectangle
Object

color:

width:

height:

"Black"

1.0

1.0



Memory
Assigning to Properties

• We can change an object's property value by 
using the assignment operator. 

"Hey paper, your width property is now 8.5"

• General form:

<object>.<property> = <value>;

paper.width = 8.5;

Rectangle
Object

color:

width:

height:

"Black"

8.5

1.0



Follow-along

• Reading and writing properties.

• Let's change the origami's rectangle dimensions to be 3.0 x 3.0

• Let's also declare another Rectangle variable named standard and 
change its dimensions to be 8.5 x 11.0



Hands-on #3: Call and Implement the area function.

1. From the main function, call the area function using the origami 
Rectangle as an argument. Print the returned value. (It should print 
0 initially.)

2. At TODO #4 - given a Rectangle parameter named input, rather than 
returning 0, try returning the input Rectangle's height multiplied by 
its width.

3. Check-in on PollEv.com/comp110 when correctly printing area.



function area(input: Rectangle): number {
return input.width * input.height;

}

print(area(origami));



Hands-on #4: Pizza Pricing Calculator
• Your goal: implement the price functionality underneath the TODO in 

01-pizza-price-app.ts

• Pricing logic for you to try implementing with a series of if-then-else statements:
• Base cost is based on size property:

• small is $7
• medium is $9
• any other size is $11

• If extraCheese property is true, it adds $1 to the cost
• For each # of toppings, add $0.75 

• You should be increasing the value stored in the cost variable.
• Hint: cost = cost + 1.0; // This will increment cost by 1

• Test by updating properties of pizza0.

• Check-in on PollEv.com/comp110 when your pricing is printing.

• Done? Try constructing another pizza in your main function.



Be Careful to Always Initialize your Variables

• Uncaught TypeError: Cannot set property '<property>' of undefined

• This happens when you try to use an object variable that hasn't been 
assigned an object.

• For example:

• let pizza1: Pizza;

• pizza1.size = "large"; // ERROR!!! pizza1 has not been initialized


