
Expressions
and

Functions that Return
Lecture 04

Step 1: Open VSCode and its Integrated Terminal

Step 2: npm run pull

Step 3: npm run start

Step 4: Open another tab to pollev.com/comp110

UTA Teaching Teams Assigned

• You can contact your teaching team from My110
• Please only contact via the My110 page

• Your first line of defense for questions is your "Teaching Team"

• If a question takes more than 5 minutes to answer, or will require back-
and-forth, UTAs are instructed to guide you to office hours
• Questions specific to code you are writing on a problem set should be addressed in

office hours

• For all COMP110 e-mail
• 24h response goal
• E-mails sent after 8pm will not be responded to until next day…

start and submit early!

Worksheet

• Due TONIGHT at 11:59pm!

• Instructions for registering for Gradescope and printing/scanning your
worksheet are on the home page of COMP110.com

• The purpose of worksheets is to help you prepare for exams
• Future worksheets we will require handwritten submissions

• Next worksheet and problem set will be posted by tomorrow.

HACK110 - Hackathon

• Mark your calendars for November 17th from 7pm until 7am

• OPTIONAL Hackathon
• Continuing to COMP401? Highly encouraged!

Warm-up #1) What is the output of these
programs?

let x: number = 13;
if (x < 18) {

print("A");
} else {

if (x === 13) {
print("B");

} else {
print("C");

}
}

let x: number = 13;
if (x < 18) {

print("A");
}

if (x === 13) {
print("B");

} else {
print("C");

}

Warm-up #1) What is the output of these
programs?

let x: number = 13;
if (x < 18) {

print("A");
} else {

if (x === 13) {
print("B");

} else {
print("C");

}
}

let x: number = 13;
if (x < 18) {

print("A");
}

if (x === 13) {
print("B");

} else {
print("C");

}

A, B A

Expressions
• Expressions are a fundamental building block in programs

• Analogous to the idea of clauses in English
• Single clause sentence:

"I am a student."
• Multiple clause sentence:

"I am a student and I am currently sitting in COMP110."

• Just like sentences can become more expressive through the creative use of
clauses…

• The statements we make in programming languages become more
expressive through the creative use of clauses…

• This is what gives us so many (unlimited!) ways to write programs which all
achieve the same goal.

Expressions

There are two big ideas behind expressions

1. Every expression simplifies to a single value
• Thus, every expression has a single result type.
• This occurs only when the program runs and the computer

reaches that line of code in the program.

2. Anywhere you can write an expression, you can choose
any expression you'd like as long as their types match

Expressions – Some examples we've seen…

Expression Resulting Type Resulting Value Expression Name

"Hello, World" string "Hello, World" string Literal

length number ? Variable Reference

length * length number ?
2x Variable Reference
Arithmetic Operation

"Area " + area string ?
Variable Reference
Concatenation Operation

Where have we used expressions?
• Assignment operator:

let <name>: <type> = <expression of same type>;

• We are able to assign any of the expressions below because each results in a
single number value:

let x: number = 1;
let y: number = x + 1;
let cubeY: number = y * y * y;

• Notice that we are combining multiple expressions in the same line.

• After each line completes, the declared variable has a single value.

Singular Expressions

• Literal Values
• 1, 3.14, true, "hi"

• Variable Access
• x, compCourseNumber

• "Unary" operators (-)
• -x

• Operators
• Arithmetic

• Concatenation

• Equality
===
!==

• Relational
>
>=

• Function Calls
• Functions that return!

Compound Expressions

What if we wanted to use a single function's
computation as part of a larger computation?

• Last week we wrote a function to calculate the area of a square

• What if we wanted to calculate the total area of a "house" with three
square-shaped rooms?

bedroom
12'x12'

bathroom
5'x5'

kitchen
10'x10'

We can't reuse our old void function…

function squareArea(length: number): void {
let area: number = length * length;
print("The area is " + area);

}

// The following line has an ERROR:
let sum: number = squareArea(5) + squareArea(10) + squareArea(12);
// "Operator + cannot be applied to types void and void

Calling a void function does return a value the program can
later make use of.

Follow-along:
Let's write a function that returns a number

1. Notice the function's return type is specified as number, not void!

2. The return statement inside of the function computes a number.

• Notice: this function does not print anything, but it "returns" or "gives
back" a value we can use later in our program:

function area(length: number): number {
return length * length;

}

let sum: number = area(5) + area(10) + area(12);

1.

2.

Function Syntax – Return Type

function <name>(<parameters>): <returnType> {
<function body statements>

}

• A function's return type is like a variable declaration's type.
• It can be a string, number, boolean, and complex types we'll see soon.

• It means calling this function will give you back a value of this type
which you can later use

• Functions with a non-void return type require a matching
return statement inside of their function body statements.

The return Statement

• General form:

return <expression>;

• Expression's type must match the return type of its function

• Every function that returns a value must have at least one return statement

• IMPORTANT: As soon as any return statement is reached the function call is complete.
• The computer evaluates the expression and returns the value immediately to its bookmark.
• This is true even if the return statement is inside of an if-then-else statement!

Functions with Multiple Inputs

• What if we wanted a function that, given 2 numbers, will return the largest?

• Let's name the function max2

• Our desired usage via function calls is:

print(max2(3, 5));
// Prints: 5

print(max2(5, 3));
// Prints: 5

Function Syntax – Multiple Parameters
function <name>(<parameters>): <returnT> {

<function body statements>

}

• A function can declare multiple parameters when it needs more than
one piece of input information

• Each parameter has a name and a type separated by a comma:
<name>: <type>, <name>: <type>

• For example:
function max2(a: number, b: number): number {

// Elided
}

Function Calls – Multiple Arguments & Parameters (1/4)

function max2(a: number, b: number): number {

// Elided

}

max2(3, 5)

When a function call is encountered...

1. Is there a function definition with this name?

2. Do the number and types of arguments match
the number and types of parameters 1-to-1?

3. Drop bookmark. Assign arguments to
parameters in the same order each is given.

4. Jump into function body block.

Function Calls – Multiple Arguments & Parameters (2/4)

function max2(a: number, b: number): number {

// Elided

}

max2(3, 5)

When a function call is encountered...

1. Is there a function definition with this name?

2. Do the number and types of arguments
match the number and types of parameters
1-to-1?

3. Drop bookmark. Assign arguments to
parameters in the same order each is given.

4. Jump into function body block.

Function Calls – Multiple Arguments & Parameters (3/4)

function max2(a: number, b: number): number {

a = 3; // Reminder: these assignments happen invisibly

b = 5; // when the program is running.

// Elided

}

max2(3, 5)

When a function call is encountered...

1. Is there a function definition with this name?

2. Do the number and types of arguments match
the number and types of parameters 1-to-1?

3. Drop bookmark. Assign arguments to
parameters in the same order each is given.

4. Jump into function body block.

Function Calls – Multiple Arguments & Parameters (4/4)

function max2(a: number, b: number): number {

a = 3; // Reminder: these assignments happen invisibly

b = 5; // when the program is running.

// Program continues here

}

max2(3, 5)

When a function call is encountered...

1. Is there a function definition with this name?

2. Do the number and types of arguments match
the number and types of parameters 1-to-1?

3. Drop bookmark. Assign arguments to
parameters in the same order each is given.

4. Jump into function body block.

Hands-on #1) Implement the max2 function

• We're trying to calculate the price of 2 sushi rolls at SPICY 9
• They have a BOGO deal where you pay the price of the more expensive roll and the other is free

• Your objective:
• Write an if-then-else statement in the max2 function with the following logic

IF parameter a IS GREATER THAN parameter b
THEN return a

OTHERWISE return b

• Test by changing the prices of the two rolls

• Check-in on PollEv.com/comp110 when complete

Return Semantics: Consider the following function

function max2(a: number, b: number): number {

if (a > b) {
return a;

}

return b;

}

• Consider the max2
function to the right

• Its purpose is to return
the greater value of
the parameters a and
b

• Does it? What
happens when a is
greater?

Returning from a function

function max2(a: number, b: number): number {

if (a > b) {
return a;

}

return b;

}

let result: number;
result = max(10, 5);

1
2

34

Parameters

a 10

b 5

1. The max2 function is called with arguments:
10, 5

2. The processor jumps to max2 function.
• if (a > b) evaluates to true, enters then block

3. return Statement encountered.
Expression a evaluates to 10. The function
call is complete and this value is returned to
step 4.

4. Processor jumps back to bookmark it left at
#1 and "max2(10, 5)" evaluates to 10.

Every function call can return only once

• Every function call is an expression. By definition, an expression is something
that evaluates to a single value.

• A function may contain many return statements

• A function may contain a return statement inside of a loop (coming next)

• As soon as the computer reaches any return statement once within a
function, that function call is completed and the value is returned.

A function call is an expression

• Because the function area returns a number,
we can call the area function anywhere a number expression is used.

print(area(3));

let foo: number = area(3);

print(area(area(3)));

• This generalizes: A function's return type defines the type of calls to it.

Hands-on #2: max3

• In the file lec 04 / 02-expression-composition-app.ts

• Try to implement the max3 function WITHOUT using an if-then-else

• Hint: Follow the strategy in the comments and remember you can use the
max2 function defined above it!

• Test by changing around variable values in the main function

• Check-in on PollEv.com/comp110

function max3(a: number, b: number, c: number): number {
// 1. Declare and initialize a variable that holds the max of a, b
// 2. Return the max of the variable from step 1 and c
let maxAB: number = max2(a, b);
return max2(maxAB, c);

}

Composing Functions

• General Principle of Programming:

Writing many small functions, each with a single purpose,
is better than writing few large functions, each with
complex purposes.

• Why? Because we can more easily reuse small, simple functions just
like we did in max3.

• Smaller, single-purposed functions are easier to compose to solve
novel problems.

Review & Upcoming Assignments

